Hermite-Hadamard type inequalities for generalized Riemann-Liouville fractional integrals of h-convex functions

被引:35
|
作者
Dragomir, Silvestru Sever [1 ,2 ]
机构
[1] Victoria Univ, Math, Coll Engn & Sci, POB 14428, Melbourne, MC 8001, Australia
[2] Univ Witwatersrand, DST NRF Ctr Excellence Math & Stat Sci, Sch Comp Sci & Appl Math, Private Bag 3, ZA-2050 Johannesburg, South Africa
关键词
convex functions; Hadamard fractional integral; Hermite-Hadamard type inequalities; h-convex functions; Riemann-Liouville fractional integrals;
D O I
10.1002/mma.5893
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish some Hermite-Hadamard type inequalities for the Generalized Riemann-Liouville fractional integrals I(a+g)(alpha)f and I(b-g)(alpha)f, where g is a strictly increasing function on (a,b), having a continuous derivative on (a, b) and under the assumption that the composite function fog(-1) is h-convex on (g (a), g (b)). Some applications for Hadamard fractional integrals and s-Godunova-Levin type convex functions are also provided.
引用
收藏
页码:2364 / 2380
页数:17
相关论文
共 50 条
  • [1] HERMITE-HADAMARD TYPE INEQUALITIES FOR RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS VIA STRONGLY h-CONVEX FUNCTIONS
    Xing, Yi
    Jiang, Chaoqun
    Ruan, Jianmiao
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (04): : 1309 - 1332
  • [2] ON HERMITE-HADAMARD TYPE INEQUALITIES FOR RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS
    Sarikaya, Mehmet Zeki
    Yildirim, Huseyin
    MISKOLC MATHEMATICAL NOTES, 2017, 17 (02) : 1049 - 1059
  • [3] Hermite-Hadamard Type Inequalities for h-Convex Functions Via Generalized Fractional Integrals
    Ali, M. Aamir
    Budak, H.
    Abbas, M.
    Sarikaya, M. Z.
    Kashuri, A.
    JOURNAL OF MATHEMATICAL EXTENSION, 2020, 14 (04) : 187 - 234
  • [4] THE LEFT RIEMANN-LIOUVILLE FRACTIONAL HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX FUNCTIONS
    Kunt, Mehmet
    Karapinar, Dunya
    Turhan, Sercan
    Iscan, Imdat
    MATHEMATICA SLOVACA, 2019, 69 (04) : 773 - 784
  • [5] Hermite-Hadamard Type Riemann-Liouville Fractional Integral Inequalities for Convex Functions
    Tomar, Muharrem
    Set, Erhan
    Sarikaya, M. Zeki
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016, 2016, 1726
  • [6] Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals
    Ali, Muhammad Aamir
    Korus, Peter
    Valdes, Juan E. Napoles
    MATHEMATICA SLOVACA, 2024, 74 (05) : 1173 - 1180
  • [7] Hermite-Hadamard Type Inequalities for s-Convex Functions via Riemann-Liouville Fractional Integrals
    Wang, Shu-Hong
    Qi, Feng
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (06) : 1124 - 1134
  • [8] HERMITE-HADAMARD TYPE INEQUALITIES FOR PRODUCT OF HARMONICALLY CONVEX FUNCTIONS VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS
    Kunt, Mehmet
    Iscan, Imdat
    Yazici, Nazli
    JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 7 (04): : 74 - 82
  • [9] Hermite-Hadamard type inequalities for multiplicative Riemann-Liouville fractional integrals
    Du, Tingsong
    Peng, Yu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 440
  • [10] On the Hermite-Hadamard type inequality for ψ-Riemann-Liouville fractional integrals via convex functions
    Liu, Kui
    Wang, JinRong
    O'Regan, Donal
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)