Resurgence and renormalons in the one-dimensional Hubbard model

被引:4
|
作者
Marino, Marcos [1 ]
Reis, Tomas
机构
[1] Univ Geneva, Dept Phys Theor, CH-1211 Geneva, Switzerland
来源
SCIPOST PHYSICS | 2022年 / 13卷 / 05期
基金
欧洲研究理事会;
关键词
GROUND-STATE ENERGY; FIELD-THEORY; SCALING LIMIT; MAGNETIZATION CURVE; PERTURBATION-THEORY; FERMIONS; SYSTEMS; WEAK; GAP;
D O I
10.21468/SciPostPhys.13.5.113
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use resurgent analysis to study non-perturbative aspects of the one-dimensional, multicomponent Hubbard model with an attractive interaction and arbitrary filling. In the two-component case, we show that the leading Borel singularity of the perturbative series for the ground-state energy is determined by the energy gap, as expected for superconducting systems. This singularity turns out to be of the renormalon type, and we identify a class of diagrams leading to the correct factorial growth. As a consequence of our analysis, we propose an explicit expression for the energy gap at weak coupling in the multi-component Hubbard model, at next-to-leading order in the coupling constant. In the two-component, half-filled case, we use the Bethe ansatz solution to determine the full trans-series for the ground state energy, and the exact form of its Stokes discontinuity.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] On integrability of the one-dimensional Hubbard model
    Melikyan, A.
    PHYSICS LETTERS B, 2023, 847
  • [2] Fusion for the one-dimensional Hubbard model
    Beisert, Niklas
    de Leeuw, Marius
    Nag, Panchali
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (32)
  • [3] The one-dimensional Hubbard model: a reminiscence
    Lieb, EH
    Wu, FY
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 321 (1-2) : 1 - 27
  • [4] NOTE ON ONE-DIMENSIONAL HUBBARD MODEL
    CAMP, WJ
    PHYSICAL REVIEW B, 1974, 10 (07) : 2903 - 2906
  • [5] Integrable variant of the one-dimensional Hubbard model
    Guan, XW
    Foerster, A
    Links, J
    Zhou, HQ
    Tonel, AP
    McKenzie, RH
    JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (07) : 3445 - 3457
  • [6] DENSITY OF STATES IN ONE-DIMENSIONAL HUBBARD MODEL
    ELK, K
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1972, 50 (02): : 439 - &
  • [7] SUSCEPTIBILITY OF THE ONE-DIMENSIONAL HUBBARD-MODEL
    MILA, F
    PENC, K
    PHYSICAL REVIEW B, 1995, 51 (03): : 1997 - 2000
  • [8] EXCITATION SPECTRUM OF ONE-DIMENSIONAL HUBBARD MODEL
    COLL, CF
    PHYSICAL REVIEW B, 1974, 9 (05): : 2150 - 2158
  • [9] Umklapp scattering in the one-dimensional Hubbard model
    Liu, Tong
    Wang, Kang
    Chi, Runze
    Liu, Yang
    Liao, Haijun
    Xiang, T.
    PHYSICAL REVIEW B, 2023, 108 (12)
  • [10] EXCITATION SPECTRUM IN ONE-DIMENSIONAL HUBBARD MODEL
    OVCHINNIKOV, AA
    SOVIET PHYSICS JETP-USSR, 1970, 30 (06): : 1160 - +