Short presentations for finite groups

被引:36
|
作者
Babai, L
Goodman, AJ
Kantor, WM
Luks, EM
Palfy, PP
机构
[1] UNIV MISSOURI,DEPT MATH & STAT,ROLLA,MO 65409
[2] UNIV OREGON,DEPT MATH,EUGENE,OR 97403
[3] UNIV OREGON,DEPT COMP & INFORMAT SCI,EUGENE,OR 97403
[4] HUNGARIAN ACAD SCI,INST MATH,H-1364 BUDAPEST,HUNGARY
基金
美国国家科学基金会; 匈牙利科学研究基金会;
关键词
D O I
10.1006/jabr.1996.6980
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We conjecture that every finite group G has a short presentation (in terms of generators and relations) in the sense that the rotal length of the relations is (log\G\)(0(1)). We show that it suffices to prove this conjecture for simple groups. Motivated by applications in computational complexity theory, we conjecture that for finite simple groups, such a short presentation is computable in polynomial time from the standard name of G, assuming in the case of Lie type simple groups over CF(p(m)) that an irreducible polynomial f of degree m over GF(p) and a primitive root of GF(p(m)) are given. We verify this (stronger) conjecture for all finite simple groups except for the three families of rank 1 twisted groups: we do not handle the unitary groups PSU(3, q) = (2)A(2)(q), the Suzuki groups Sz(q) = B-2(2)(q), and the Ree groups R(q) = (2)G(2)(q). In particular, all finite groups G without composition factors of these types have presentations of length O((log\G\)(3)). For groups of Lie type (normal or twisted) of rank greater than or equal to 2, we use a reduced version of the Curtis-Steinberg-Tits presentation. (C) 1997 Academic Press.
引用
收藏
页码:79 / 112
页数:34
相关论文
共 50 条
  • [1] FINITE PRESENTATIONS FOR GROUPS
    CRAGGS, R
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 78 (02) : 170 - 174
  • [2] Groups, semigroups and finite presentations
    Campbell, CM
    Robertson, EF
    Ruskuc, N
    Thomas, RM
    GEOMETRIC GROUP THEORY DOWN UNDER, 1999, : 55 - 69
  • [3] NONLINEAR PRESENTATIONS OF FINITE GROUPS
    DUSSAUD, R
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1971, 273 (06): : 346 - &
  • [4] SHORT PRESENTATIONS FOR ALTERNATING AND SYMMETRIC GROUPS
    Bray, J. N.
    Conder, M. D. E.
    Leedham-Green, C. R.
    O'Brien, E. A.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (06) : 3277 - 3285
  • [5] Finite presentations of adelic groups, the congruence kernel and cohomology of finite simple groups
    Lubotzky, Alexander
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2005, 1 (02) : 241 - 256
  • [6] Infinite groups arising from partial presentations of finite groups
    Bergman, GM
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1999, 127 : 425 - 439
  • [7] CLASSIFYING NONEQUIVALENT PRESENTATIONS OF FINITE GROUPS - THE CASE OF DICYCLIC GROUPS
    Daugulis, Peteris
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2018, 40 (06): : 1029 - 1042
  • [8] EFFICIENT PRESENTATIONS FOR FINITE SIMPLE-GROUPS AND RELATED GROUPS
    CAMPBELL, CM
    ROBERTSON, EF
    WILLIAMS, PD
    LECTURE NOTES IN MATHEMATICS, 1989, 1398 : 65 - 72
  • [9] EFFICIENT PRESENTATIONS FOR FINITE SIMPLE-GROUPS AND RELATED GROUPS
    CAMPBELL, CM
    ROBERTSON, EF
    WILLIAMS, PD
    GROUPS - KOREA 1988, 1989, 1398 : 65 - 72
  • [10] Presentations of finite simple groups: a computational approach
    Guralnick, R. M.
    Kantor, W. M.
    Kassabov, M.
    Lubotzky, A.
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2011, 13 (02) : 391 - 458