Stochastic algorithms for solving linear and nonlinear inverse ill-posed problems for particle size retrieving and x-ray diffraction analysis of epitaxial films
被引:2
|
作者:
Sabelfeld, Karl K.
论文数: 0引用数: 0
h-index: 0
机构:
Russian Acad Sci, Inst Computat Math & Math Geophys, Novosibirsk 630090, RussiaRussian Acad Sci, Inst Computat Math & Math Geophys, Novosibirsk 630090, Russia
Sabelfeld, Karl K.
[1
]
Mozartova, Nadezhda S.
论文数: 0引用数: 0
h-index: 0
机构:
Russian Acad Sci, Inst Computat Math & Math Geophys, Novosibirsk 630090, RussiaRussian Acad Sci, Inst Computat Math & Math Geophys, Novosibirsk 630090, Russia
Mozartova, Nadezhda S.
[1
]
机构:
[1] Russian Acad Sci, Inst Computat Math & Math Geophys, Novosibirsk 630090, Russia
We suggest stochastic simulation techniques for solving two classes of linear and nonlinear inverse and ill-posed problems: (1) recovering the particle nanosize distribution from diffusion battery measurements, (2) retrieving the step structure of the epitaxial films from the x-ray diffraction analysis. To solve these problems we develop three stochastic based methods: (1) the random projection method, a stochastic version of the Kaczmarz method, (2) a randomized SVD method, (3) stochastic genetic algorithm. Results of comparative simulations of the three methods are also presented.
机构:
Inst Computat Math & Math Geophys, Lavrentiev Pr 6, Novosibirsk 630090, Russia
NSU, Novosibirsk, RussiaInst Computat Math & Math Geophys, Lavrentiev Pr 6, Novosibirsk 630090, Russia