Application of differential evolutionary optimization methodology for parameter structure identification in groundwater modeling

被引:1
|
作者
Chiu, Yung-Chia [1 ]
机构
[1] Natl Taiwan Ocean Univ, Inst Appl Geosci, Keelung 20224, Taiwan
关键词
Differential evolution; Parameter structure identification; Inverse modeling; Groundwater flow; Taiwan; GLOBAL OPTIMIZATION; AQUIFER PARAMETER; INVERSE PROBLEM; ALGORITHM; VALUES;
D O I
10.1007/s10040-014-1172-7
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Parameter structure identification is formulated in terms of solving an inverse problem, which allows for a determination of an appropriate level of parameter structure complexity, and the identification of its pattern and the associated parameter values. With the increasing complexity of parameter structure identification in groundwater modeling, demand for robust, fast, and accurate optimizers is on the rise among researchers from groundwater hydrology fields. A novel global optimizer, differential evolution (DE), has been proposed to solve the parameter-structure-identification problem. The Voronoi tessellation is adopted for the automatic parameterization. The stepwise regression method and the error covariance matrix are used to determine the optimal structure complexity. Numerical experiments with a continuous hydraulic conductivity distribution are conducted to demonstrate the proposed methodology. The results indicate that the DE can identify the global optimum effectively and efficiently. A sensitivity analysis of the control parameters and mutation schemes implemented in the DE is employed to examine their influence on the objective function. The comparison between DE and genetic algorithm shows the advantage of DE in terms of robustness and efficiency. The proposed methodology is also applied to a real groundwater system, Pingtung Plain in Taiwan, and the properties of aquifers are successfully identified.
引用
收藏
页码:1731 / 1748
页数:18
相关论文
共 50 条
  • [1] An integrated optimization algorithm for parameter structure identification in groundwater modeling
    Tan, Chung-Che
    Tung, Ching-Pin
    Chen, Chu-Hui
    Yeh, William W. -G.
    ADVANCES IN WATER RESOURCES, 2008, 31 (03) : 545 - 560
  • [2] Global-local optimization for parameter structure identification in three-dimensional groundwater modeling
    Tsai, FTC
    Sun, NZ
    Yeh, WWG
    WATER RESOURCES RESEARCH, 2003, 39 (02)
  • [3] Optimal observation network design for parameter structure identification in groundwater modeling
    Chang, LF
    Sun, NZ
    Yeh, WG
    WATER RESOURCES RESEARCH, 2005, 41 (03) : 1 - 14
  • [4] Structure and Parameter Identification with Evolutionary Algorithms
    Braun, Jan
    Krettek, Johannes
    Hoffmann, Frank
    Bertram, Torsten
    Lausch, Horst
    Schoppel, Georg
    AT-AUTOMATISIERUNGSTECHNIK, 2011, 59 (06) : 340 - 352
  • [5] A combinatorial optimization scheme for parameter structure identification in ground water modeling
    Tsai, FTC
    Sun, NZ
    Yeh, WWG
    GROUND WATER, 2003, 41 (02) : 156 - 169
  • [6] Structure identification and parameter optimization for non-linear fuzzy modeling
    Evsukoff, A
    Branco, ACS
    Galichet, S
    FUZZY SETS AND SYSTEMS, 2002, 132 (02) : 173 - 188
  • [7] IDENTIFICATION OF PARAMETER STRUCTURE IN GROUNDWATER INVERSE PROBLEM
    SUN, NZ
    YEH, WWG
    WATER RESOURCES RESEARCH, 1985, 21 (06) : 869 - 883
  • [8] A fitness differential adaptive parameter controlled evolutionary algorithm with application to the design structure matrix
    Lancaster, John
    Cheng, Kai
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2008, 46 (18) : 5043 - 5057
  • [9] Evolutionary programming algorithm for load modeling and parameter identification
    Tsinghua Univ, Beijing, China
    Qinghua Daxue Xuebao, 3 (37-40):
  • [10] Parameter optimization of an evolutionary algorithm for RNA structure discovery
    Fogel, GB
    Weekes, DG
    Sampath, R
    Ecker, DJ
    CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2004, : 607 - 613