Multiple invariants conserving Runge-Kutta type methods for Hamiltonian problems

被引:32
|
作者
Brugnano, Luigi [1 ]
Sun, Yajuan [2 ]
机构
[1] Univ Florence, Dipartimento Matemat & Informat U Dini, Florence, Italy
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
关键词
Hamiltonian problems; Energy-conserving methods; Multiple invariants; Discrete line-integral methods; HBVMs; LIMs; ELIMs; EHBVMs; GEOMETRIC INTEGRATION; CONSERVATIVE PROBLEMS; FINITE-ELEMENTS; SYSTEMS; ENERGY; TIME; FRAMEWORK; ODES;
D O I
10.1007/s11075-013-9769-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a recent series of papers, the class of energy-conserving Runge-Kutta methods named Hamiltonian BVMs (HBVMs) has been defined and studied. Such methods have been further generalized for the efficient solution of general conservative problems, thus providing the class of Line Integral Methods (LIMs). In this paper we derive a further extension, which we name Enhanced Line Integral Methods (ELIMs), more tailored for Hamiltonian problems, allowing for the conservation of multiple invariants of the continuous dynamical system. The analysis of the methods is fully carried out and some numerical tests are reported, in order to confirm the theoretical achievements.
引用
收藏
页码:611 / 632
页数:22
相关论文
共 50 条
  • [1] Multiple invariants conserving Runge-Kutta type methods for Hamiltonian problems
    Luigi Brugnano
    Yajuan Sun
    Numerical Algorithms, 2014, 65 : 611 - 632
  • [2] Relaxation Runge-Kutta Methods for Hamiltonian Problems
    Ranocha, Hendrik
    Ketcheson, David I.
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (01)
  • [3] PARTITIONED RUNGE-KUTTA METHODS FOR SEPARABLE HAMILTONIAN PROBLEMS
    ABIA, L
    SANZSERNA, JM
    MATHEMATICS OF COMPUTATION, 1993, 60 (202) : 617 - 634
  • [4] Application of symplectic partitioned Runge-Kutta methods to Hamiltonian problems
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    ADVANCES IN COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2005, VOLS 4 A & 4 B, 2005, 4A-4B : 417 - 420
  • [5] Preserving algebraic invariants with Runge-Kutta methods
    Iserles, A
    Zanna, A
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 125 (1-2) : 69 - 81
  • [6] On the preservation of invariants by explicit Runge-Kutta methods
    Calvo, M.
    Hernandez-Abreu, D.
    Montijano, J. I.
    Randez, L.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (03): : 868 - 885
  • [7] Quadratic invariants and multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs
    Sun, Yajuan
    NUMERISCHE MATHEMATIK, 2007, 106 (04) : 691 - 715
  • [8] Quadratic invariants and multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs
    Yajuan Sun
    Numerische Mathematik, 2007, 106 : 691 - 715
  • [9] Projected Runge-Kutta methods for constrained Hamiltonian systems
    Wei, Yi
    Deng, Zichen
    Li, Qingjun
    Wang, Bo
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2016, 37 (08) : 1077 - 1094
  • [10] Projected Runge-Kutta methods for constrained Hamiltonian systems
    Yi WEI
    Zichen DENG
    Qingjun LI
    Bo WANG
    Applied Mathematics and Mechanics(English Edition), 2016, 37 (08) : 1077 - 1094