Practical long-distance quantum key distribution system using decoy levels

被引:65
|
作者
Rosenberg, D. [1 ]
Peterson, C. G. [1 ]
Harrington, J. W. [1 ]
Rice, P. R. [1 ]
Dallmann, N. [1 ]
Tyagi, K. T. [1 ]
McCabe, K. P. [1 ]
Nam, S. [2 ]
Baek, B. [2 ]
Hadfield, R. H. [3 ]
Hughes, R. J. [1 ]
Nordholt, J. E. [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Natl Inst Stand & Technol, Boulder, CO USA
[3] Heriot Watt Univ, Edinburgh, Midlothian, Scotland
来源
NEW JOURNAL OF PHYSICS | 2009年 / 11卷
关键词
SECURITY;
D O I
10.1088/1367-2630/11/4/045009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum key distribution (QKD) has the potential for widespread real-world applications, but no secure long-distance experiment has demonstrated the truly practical operation needed to move QKD from the laboratory to the real world due largely to limitations in synchronization and poor detector performance. Here, we report results obtained using a fully automated, robust QKD system based on the Bennett Brassard 1984 (BB84) protocol with low-noise superconducting nanowire single-photon detectors (SNSPDs) and decoy levels to produce a secret key with unconditional security over a record 140.6 km of optical fibre, an increase of more than a factor of five compared with the previous record for unconditionally secure key generation in a practical QKD system.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Long-distance practical quantum key distribution by entanglement swapping
    Scherer, Artur
    Sanders, Barry C.
    Tittel, Wolfgang
    OPTICS EXPRESS, 2011, 19 (04): : 3004 - 3018
  • [2] Long-distance decoy-state quantum key distribution in optical fiber
    Rosenberg, Danna
    Harrington, Jim W.
    Rice, Patrick R.
    Hiskett, Philip A.
    Peterson, Charles G.
    Hughes, Richard J.
    Lita, Adriana E.
    Nam, Sae Woo
    Nordholt, Jane E.
    PHYSICAL REVIEW LETTERS, 2007, 98 (01)
  • [3] A stable long-distance quantum key distribution system
    Wu, G
    Zhou, CY
    Chen, XL
    Han, XH
    Zeng, HP
    ACTA PHYSICA SINICA, 2005, 54 (08) : 3622 - 3626
  • [4] Long-distance quantum key distribution using concatenated entanglement swapping with practical resources
    Khalique, Aeysha
    Sanders, Barry C.
    OPTICAL ENGINEERING, 2017, 56 (01)
  • [5] Decoy-state quantum key distribution over long-distance optical fiber
    Guarda, Giulia
    Ribezzo, Domenico
    Salvoni, Daniela
    Bruscino, Ciro
    Ercolano, Pasquale
    Ejrnaes, Mikkel
    Parlato, Loredana
    Zhang, C.
    Li, H.
    You, L.
    Vagniluca, Ilaria
    De Lazzari, Claudia
    Occhipinti, Tommaso
    Pepe, Giovanni P.
    Zavatta, Alessandro
    Bacco, Davide
    QUANTUM COMPUTING, COMMUNICATION, AND SIMULATION IV, 2024, 12911
  • [6] Long-distance entanglement-based quantum key distribution experiment using practical detectors
    Takesue, Hiroki
    Harada, Ken-ichi
    Tamaki, Kiyoshi
    Fukuda, Hiroshi
    Tsuchizawa, Tai
    Watanabe, Toshifumi
    Yamada, Koji
    Itabashi, Sei-ichi
    OPTICS EXPRESS, 2010, 18 (16): : 16777 - 16787
  • [7] Long-distance quantum-key-distribution using concatenated entanglement swapping with practical resources
    Khalique, Aeysha
    Sanders, Barry C.
    QUANTUM COMMUNICATIONS AND QUANTUM IMAGING XIV, 2016, 9980
  • [8] Experimental long-distance decoy-state quantum key distribution based on polarization encoding
    Peng, Cheng-Zhi
    Zhang, Jun
    Yang, Dong
    Gao, Wei-Bo
    Ma, Huai-Xin
    Yin, Hao
    Zeng, He-Ping
    Yang, Tao
    Wang, Xiang-Bin
    Pan, Jian-Wei
    PHYSICAL REVIEW LETTERS, 2007, 98 (01)
  • [9] Practical Long-Distance Side-Channel-Free Quantum Key Distribution
    Wang, Xiang-Bin
    Hu, Xiao-Long
    Yu, Zong-Wen
    PHYSICAL REVIEW APPLIED, 2019, 12 (05):
  • [10] Long-distance quantum key distribution with imperfect devices
    Lo Piparo, Nicolo
    Razavi, Mohsen
    PHYSICAL REVIEW A, 2013, 88 (01):