An excursion approach to maxima of the Brownian bridge

被引:3
|
作者
Perman, Mihael [1 ,2 ]
Wellner, Jon A. [3 ]
机构
[1] Fac Math & Phys, SI-1000 Ljubljana, Slovenia
[2] Univ Primorska, Fac Math Nat Sci & Informat Technol, SI-6000 Koper, Slovenia
[3] Univ Washington, Dept Stat, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
Brownian bridge; Resealing; Excursions; Extrema; Kolmogorov-Smirnov statistics;
D O I
10.1016/j.spa.2014.04.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Distributions of functionals of Brownian bridge arise as limiting distributions in non-parametric statistics. In this paper we will give a derivation of distributions of extrema of the Brownian bridge based on excursion theory for Brownian motion. The idea of resealing and conditioning on the local time has been used widely in the literature. In this paper it is used to give a unified derivation of a number of known distributions, and a few new ones. Particular cases of calculations include the distribution of the Kolmogorov-Smimov statistic and the Kuiper statistic. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:3106 / 3120
页数:15
相关论文
共 50 条
  • [1] RELATION BETWEEN BROWNIAN BRIDGE AND BROWNIAN EXCURSION
    VERVAAT, W
    ADVANCES IN APPLIED PROBABILITY, 1978, 10 (02) : 299 - 299
  • [2] RELATION BETWEEN BROWNIAN BRIDGE AND BROWNIAN EXCURSION
    VERVAAT, W
    ANNALS OF PROBABILITY, 1979, 7 (01): : 143 - 149
  • [3] RELATIONS BETWEEN BROWNIAN BRIDGE AND EXCURSION
    BIANE, P
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1986, 22 (01): : 1 - 7
  • [4] PATH TRANSFORMATIONS CONNECTING BROWNIAN BRIDGE, EXCURSION AND MEANDER
    BERTOIN, J
    PITMAN, J
    BULLETIN DES SCIENCES MATHEMATIQUES, 1994, 118 (02): : 147 - 166
  • [5] Brownian Excursion Theory: A First Approach
    Yen, Ju-Yi
    Yor, Marc
    LOCAL TIMES AND EXCURSION THEORY FOR BROWNIAN MOTION: A TALE OF WIENER AND ITO MEASURES, 2013, 2088 : 57 - 64
  • [6] Joint distributions of partial and global maxima of a Brownian bridge
    Benichou, Olivier
    Krapivsky, P. L.
    Mejia-Monasterio, Carlos
    Oshanin, Gleb
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (33)
  • [7] FUNCTIONALS OF BROWNIAN MEANDER AND BROWNIAN EXCURSION
    DURRETT, RT
    IGLEHART, DL
    ANNALS OF PROBABILITY, 1977, 5 (01): : 130 - 135
  • [8] WEAK CONVERGENCE TO BROWNIAN MEANDER AND BROWNIAN EXCURSION
    DURRETT, RT
    IGLEHART, DL
    MILLER, DR
    ANNALS OF PROBABILITY, 1977, 5 (01): : 117 - 129
  • [9] MAXIMA IN BROWNIAN EXCURSIONS
    CHUNG, KL
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 81 (04) : 742 - 745
  • [10] Brownian excursion with a single mark
    Jansons, KM
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2064): : 3705 - 3709