Geometry of the Kaup-Newell equation

被引:18
|
作者
Guha, P
机构
[1] SN Bose Natl Ctr Basic Sci, Kolkata 700098, W Bengal, India
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
关键词
diffeomorphism; Bott-Virasoro group; derivative nonlinear Schrodinger equation; implectic operator;
D O I
10.1016/S0034-4877(02)80040-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is known that the KdV equation appears naturally in the geometry of the orientation preserving diffeomorphic group Diff(S-1). It is a geodesic flow of a L-2 metric on the Bott-Virasoro group. The nonlinear Schrodinger equation (NLSE) is an evolution equation analogous to the KdV equation which describes an isospectral deformation of the first order 2x2 matrix differential operator, yet the family of NSLE has not been studied via diffeomorphic groups. In this paper we derive the Kaup-Newell equation and its generalizations are the Euler-Poincare flows on the space of first-order scalar (or matrix) differential operators. We show that the operators involved in the flow generated by the action of Vect(S-1) are neither Poisson nor skew symmetric. We also discuss the relation between the KdV flow and the Kaup-Newell flow.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [1] Conservation laws of a perturbed Kaup-Newell equation
    Yang, Jing-Yun
    Ma, Wen-Xiu
    MODERN PHYSICS LETTERS B, 2016, 30 (32-33):
  • [2] Chirped envelope optical solitons for Kaup-Newell equation
    Triki, Houria
    Biswas, Anjan
    Zhou, Qin
    Moshokoa, Seithuti P.
    Belic, Milivoj
    OPTIK, 2019, 177 : 1 - 7
  • [3] Analytical and numerical treatments for the Kaup-Newell dynamical equation
    Al Qarni, A. A.
    Alshaery, A. A.
    Bakodah, H. O.
    Banaja, M. A.
    Mohammed, A. S. H. F.
    RESULTS IN PHYSICS, 2020, 19
  • [4] INTEGRABLE COUPLINGS OF SUPER KAUP-NEWELL EQUATION HIERARCHY
    Ji, Jie
    Sun, Ye-Peng
    Zhang, Jian-Bing
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2012, 26 (30):
  • [5] ROGUE WAVE ON A PERIODIC BACKGROUND FOR KAUP-NEWELL EQUATION
    Liu, Wei
    Zhang, Yongshuai
    He, Jingsong
    ROMANIAN REPORTS IN PHYSICS, 2018, 70 (02)
  • [6] Optical solitons for the Kaup-Newell equation by collective variables method
    Al Qarni, A. A.
    Alshaery, A. A.
    Bakodah, H. O.
    MODERN PHYSICS LETTERS B, 2021, 35 (35):
  • [7] On generating equations for the Kaup-Newell hierarchy
    Yang Z.
    Zeng Y.
    Applied Mathematics-A Journal of Chinese Universities, 2007, 22 (4) : 413 - 420
  • [8] Two types of new integrable decompositions of the Kaup-Newell equation
    Ji, Jie
    Zhou, Ruguang
    CHAOS SOLITONS & FRACTALS, 2006, 30 (04) : 993 - 1003
  • [9] Soliton solutions in different classes for the Kaup-Newell model equation
    Souleymanou, Abbagari
    Korkmaz, Alper
    Rezazadeh, Hadi
    Mukam, Serge Paulin Takougoum
    Bekir, Ahmet
    MODERN PHYSICS LETTERS B, 2020, 34 (03):
  • [10] A Riemann-Hilbert Approach to the Multicomponent Kaup-Newell Equation
    Zhang, Jian-bing
    Zhang, Ze-xuan
    ADVANCES IN MATHEMATICAL PHYSICS, 2020, 2020