Brain aromatase: New lessons from non-mammalian model systems

被引:115
|
作者
Forlano, Paul M.
Schlinger, Barney A.
Bass, Andrew H.
机构
[1] Oregon Hlth & Sci Univ, Vollum Inst, Portland, OR 97239 USA
[2] Univ Calif Los Angeles, Brain Res Inst, Dept Physiol Sci, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Brain Res Inst, Neuroendocrinol Lab, Los Angeles, CA 90095 USA
[4] Cornell Univ, Dept Neurobiol & Behav, Ithaca, NY 14853 USA
关键词
brain aromatase; estrogen; neurosteroid; glia; songbird; teleost; vocal communication; hearing; sex differences; neuroprotection; learning and memory;
D O I
10.1016/j.yfrne.2006.05.002
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
This review highlights recent studies of the anatomical and functional implications of brain aromatase (estrogen synthase) expression in two vertebrate lineages, teleost fishes and songbirds, that show remarkably high levels of adult brain aromatase activity, protein and gene expression compared to other vertebrate groups. Teleosts and birds have proven to be important neuroethological models for investigating how local estrogen synthesis leads to changes in neural phenotypes that translate into behavior. Region-specific patterns of aromatase expression, and thus estrogen synthesis, include the vocal and auditory circuits that figure prominently into the life history adaptations of vocalizing teleosts and songbirds. Thus, by targeting, for example, vocal motor circuits without inappropriate steroid exposure to other steroid-dependent circuits, such as those involved in either copulatory or spawning behaviors, the neuroendocrine system can achieve temporal and spatial specificity in its modulation of neural circuits that lead to the performance of any one behavior. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:247 / 274
页数:28
相关论文
共 50 条
  • [1] Conservation of sleep: insights from non-mammalian model systems
    Zimmerman, John E.
    Naidoo, Nirinjini
    Raizen, David M.
    Pack, Allan I.
    TRENDS IN NEUROSCIENCES, 2008, 31 (07) : 371 - 376
  • [2] Lessons from p53 in non-mammalian models
    Lu, W-J
    Abrams, J. M.
    CELL DEATH AND DIFFERENTIATION, 2006, 13 (06): : 909 - 912
  • [3] Non-mammalian Genetic Model Systems in Sleep Research
    Raizen, David M.
    Zimmerman, John E.
    SLEEP MEDICINE CLINICS, 2011, 6 (02) : 131 - 139
  • [4] Lessons from p53 in non-mammalian models
    W-J Lu
    J M Abrams
    Cell Death & Differentiation, 2006, 13 : 909 - 912
  • [5] The Aromatase-Estrogen System in the Testes of Non-Mammalian Vertebrates
    Rosati, Luigi
    Falvo, Sara
    Baccari, Gabriella Chieffi
    Santillo, Alessandra
    Di Fiore, Maria Maddalena
    ANIMALS, 2021, 11 (06):
  • [6] Spinal cord regeneration: Lessons for mammals from non-mammalian vertebrates
    Lee-Liu, Dasfne
    Edwards-Faret, Gabriela
    Tapia, Victor S.
    Larrain, Juan
    GENESIS, 2013, 51 (08) : 529 - 544
  • [7] Hsp90 in non-mammalian metazoan model systems
    Haslbeck, Veronika
    Kaiser, Christoph J. O.
    Richter, Klaus
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2012, 1823 (03): : 712 - 721
  • [8] Sleep circuits and physiology in non-mammalian systems
    Lyons, Declan G.
    Rihel, Jason
    CURRENT OPINION IN PHYSIOLOGY, 2020, 15 : 245 - 255
  • [9] Dictyostelium discoideum as a non-mammalian biomedical model
    Martin-Gonzalez, Javier
    Montero-Bullon, Javier-Fernando
    Lacal, Jesus
    MICROBIAL BIOTECHNOLOGY, 2021, 14 (01): : 111 - 125
  • [10] CHARACTERIZATION OF INSULINASE FROM MAMMALIAN AND NON-MAMMALIAN LIVERS
    MANNOR, G
    MOVSAS, B
    YALOW, RS
    LIFE SCIENCES, 1984, 34 (14) : 1341 - 1345