N=4 superconformal bootstrap of the K3 CFT

被引:0
|
作者
Lin, Ying-Hsuan [1 ]
Shao, Shu-Heng [1 ]
Simmons-Duffin, David [2 ]
Wang, Yifan [3 ]
Yin, Xi [1 ]
机构
[1] Harvard Univ, Jefferson Phys Lab, 17 Oxford St, Cambridge, MA 02138 USA
[2] Inst Adv Study, Sch Nat Sci, 1 Einstein Dr, Princeton, NJ 08540 USA
[3] MIT, Ctr Theoret Phys, 77 Massachusetts Ave, Cambridge, MA 02139 USA
来源
关键词
Conformal Field Theory; Extended Supersymmetry; Field Theories in Lower Dimensions; STRING THEORY; UNITARY REPRESENTATIONS; CONFORMAL SYMMETRY; FIELD-THEORY; MANIFOLDS; ALGEBRAS; SPACE;
D O I
10.1007/JHEP05(2017)126
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study two-dimensional (4,4) superconformal field theories of central charge c = 6, corresponding to nonlinear sigma models on K3 surfaces, using the superconformal bootstrap. This is made possible through a surprising relation between the BPS N = 4 superconformal blocks with c = 6 and bosonic Virasoro conformal blocks with c = 28, and an exact result on the moduli dependence of a certain integrated BPS 4-point function. Nontrivial bounds on the non-BPS spectrum in the K3 CFT are obtained as functions of the CFT moduli, that interpolate between the free orbifold points and singular CFT points. We observe directly from the CFT perspective the signature of a continuous spectrum above a gap at the singular moduli, and find numerically an upper bound on this gap that is saturated by the A1 N = 4 cigar CFT. We also derive an analytic upper bound on the first nonzero eigenvalue of the scalar Laplacian on K3 in the large volume regime, that depends on the K3 moduli data. As two byproducts, we find an exact equivalence between a class of BPS N = 2 superconformal blocks and Virasoro conformal blocks in two dimensions, and an upper bound on the four-point functions of operators of sufficiently low scaling dimension in three and four dimensional CFTs.
引用
收藏
页数:52
相关论文
共 50 条
  • [1] N=4 Superconformal Bootstrap
    Beem, Christopher
    Rastelli, Leonardo
    van Rees, Balt C.
    PHYSICAL REVIEW LETTERS, 2013, 111 (07)
  • [2] More N=4 superconformal bootstrap
    Beem, Christopher
    Rastelli, Leonardo
    van Rees, Balt C.
    PHYSICAL REVIEW D, 2017, 96 (04)
  • [3] N=4 SYM on K3 and the AdS3/CFT2 correspondence
    Okuyama, Kazumi
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (02):
  • [4] The N=2 superconformal bootstrap
    Beem, Christopher
    Lemos, Madalena
    Liendo, Pedro
    Rastelli, Leonardo
    van Rees, Balt C.
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (03):
  • [5] ON K3 AND K4 OF THE INTEGERS MOD N
    AISBETT, J
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 6 (03) : 417 - 420
  • [6] A K3 IN φ4
    Brown, Francis
    Schnetz, Oliver
    DUKE MATHEMATICAL JOURNAL, 2012, 161 (10) : 1817 - 1862
  • [7] N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 superconformal bootstrap of the K3 CFT
    Ying-Hsuan Lin
    Shu-Heng Shao
    David Simmons-Duffin
    Yifan Wang
    Xi Yin
    Journal of High Energy Physics, 2017 (5)
  • [8] The N=8 superconformal bootstrap in three dimensions
    Chester, Shai M.
    Lee, Jaehoon
    Pufu, Silviu S.
    Yacoby, Ran
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (09):
  • [9] On the N=3 and N=4 superconformal holographic dictionary
    Ozer, H. T.
    Filiz, Aytul
    EUROPEAN PHYSICAL JOURNAL C, 2025, 85 (01):
  • [10] Elliptic recursion for 4-point superconformal blocks and bootstrap in N = 1 SLFT
    Paulina Suchanek
    Journal of High Energy Physics, 2011