Image reconstruction from photon sparse data

被引:14
|
作者
Mertens, Lena [1 ]
Sonnleitner, Matthias [1 ]
Leach, Jonathan [2 ]
Agnew, Megan [2 ]
Padgett, Miles J. [1 ]
机构
[1] Univ Glasgow, Sch Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland
[2] Heriot Watt Univ, Dept Phys, Edinburgh EH14 4AS, Midlothian, Scotland
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
奥地利科学基金会; 英国工程与自然科学研究理事会;
关键词
D O I
10.1038/srep42164
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We report an algorithm for reconstructing images when the average number of photons recorded per pixel is of order unity, i.e. photon-sparse data. The image optimisation algorithm minimises a cost function incorporating both a Poissonian log-likelihood term based on the deviation of the reconstructed image from the measured data and a regularization-term based upon the sum of the moduli of the second spatial derivatives of the reconstructed image pixel intensities. The balance between these two terms is set by a bootstrapping technique where the target value of the log-likelihood term is deduced from a smoothed version of the original data. When compared to the original data, the processed images exhibit lower residuals with respect to the true object. We use photon-sparse data from two different experimental systems, one system based on a single-photon, avalanche photo-diode array and the other system on a time-gated, intensified camera. However, this same processing technique could most likely be applied to any low photon-number image irrespective of how the data is collected.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Image reconstruction from photon sparse data
    Lena Mertens
    Matthias Sonnleitner
    Jonathan Leach
    Megan Agnew
    Miles J. Padgett
    Scientific Reports, 7
  • [2] Image Reconstruction From Sparse Data in Breast CT
    Bian, J.
    Yang, K.
    Packard, N.
    Sidky, E.
    Boone, J.
    Pan, X.
    MEDICAL PHYSICS, 2008, 35 (06)
  • [3] IMAGE-RECONSTRUCTION FROM MULTIPLE FRAMES OF SPARSE DATA
    RAMASESHAN, R
    YEGNANARAYANA, B
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 1993, 4 (02) : 167 - 179
  • [4] Image Reconstruction from Sparse Data in Echo-Planar Imaging
    LaRoque, Samuel J.
    Sidky, Emil Y.
    Pan, Xiaochuan
    2006 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOL 1-6, 2006, : 3166 - 3169
  • [5] CT image reconstruction from ultra-sparse projection data
    Wu L.
    Sun F.
    Yang J.
    Yu Q.
    He F.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2020, 46 (12): : 2366 - 2373
  • [6] Template-Based Image Reconstruction from Sparse Tomographic Data
    Lukas F. Lang
    Sebastian Neumayer
    Ozan Öktem
    Carola-Bibiane Schönlieb
    Applied Mathematics & Optimization, 2020, 82 : 1081 - 1109
  • [7] Template-Based Image Reconstruction from Sparse Tomographic Data
    Lang, Lukas F.
    Neumayer, Sebastian
    Oktem, Ozan
    Schonlieb, Carola-Bibiane
    APPLIED MATHEMATICS AND OPTIMIZATION, 2020, 82 (03): : 1081 - 1109
  • [8] RECONSTRUCTION OF A COLOR IMAGE FROM NONUNIFORMLY DISTRIBUTED SPARSE AND NOISY DATA
    METAXAS, D
    MILIOS, E
    CVGIP-GRAPHICAL MODELS AND IMAGE PROCESSING, 1992, 54 (02): : 103 - 111
  • [9] Sparse-view Image Reconstruction from Gated Cardiac Data
    Bian, Junguo
    Wang, Jiong
    Han, Xiao
    Ye, Jinghan
    Prevrhal, Sven
    Sidky, Emil Y.
    Shao, Lingxiong
    Pan, Xiaochuan
    2011 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2011, : 2549 - 2552
  • [10] Nonnegative image reconstruction from sparse Fourier data: a new deconvolution algorithm
    Bonettini, S.
    Prato, M.
    INVERSE PROBLEMS, 2010, 26 (09)