Study of thermal conduction of carbon nanotube by molecular dynamics

被引:20
|
作者
Bao Wen-Xing [1 ]
Zhu Chang-Chun
机构
[1] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian 710049, Peoples R China
[2] Second NW Univ Minorities, Dept Comp Sci, Yinchuan 750021, Peoples R China
关键词
molecular dynamics; carbon nanotube; thermal conductivity; HYDROCARBONS; SIMULATION; TRANSPORT;
D O I
10.7498/aps.55.3552
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on the molecular dynamics method and improved reactive empirical bond order potential, Green-Kubo function is used to calculate the thermal conductivity of carbon nanotube. The overlapping method is used which shortens the simulation time greatly. The result shows that the most significant contribution to the thermal conductivity is presented by the auto correlation of interactive force of atoms. The thermal conductivity decreases as the tube diameter increases. The thermal conductivity increases as the temperature increases for temperature lower than 300K and converges to a constant when the temperature rises above 300K. The thermal conductivity of the single-walled carbon nanotube ranges from 1000W/mK to 4000W/mK, and the results are in good agreement with the experimental data.
引用
收藏
页码:3552 / 3557
页数:6
相关论文
共 15 条
  • [1] Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics
    Bao, WX
    Zhu, CC
    Cui, WZ
    [J]. PHYSICA B-CONDENSED MATTER, 2004, 352 (1-4) : 156 - 163
  • [2] Unusually high thermal conductivity of carbon nanotubes
    Berber, S
    Kwon, YK
    Tománek, D
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (20) : 4613 - 4616
  • [3] EMPIRICAL POTENTIAL FOR HYDROCARBONS FOR USE IN SIMULATING THE CHEMICAL VAPOR-DEPOSITION OF DIAMOND FILMS
    BRENNER, DW
    [J]. PHYSICAL REVIEW B, 1990, 42 (15): : 9458 - 9471
  • [4] A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons
    Brenner, DW
    Shenderova, OA
    Harrison, JA
    Stuart, SJ
    Ni, B
    Sinnott, SB
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (04) : 783 - 802
  • [5] Molecular dynamics studies of thermal conductivity time correlation functions
    de Andrade, J
    Stassen, H
    [J]. JOURNAL OF MOLECULAR LIQUIDS, 2004, 110 (1-3) : 169 - 176
  • [6] Measuring the thermal conductivity of a single carbon nanotube
    Fujii, M
    Zhang, X
    Xie, HQ
    Ago, H
    Takahashi, K
    Ikuta, T
    Abe, H
    Shimizu, T
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (06)
  • [7] Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential
    Girifalco, LA
    Hodak, M
    Lee, RS
    [J]. PHYSICAL REVIEW B, 2000, 62 (19) : 13104 - 13110
  • [8] HELICAL MICROTUBULES OF GRAPHITIC CARBON
    IIJIMA, S
    [J]. NATURE, 1991, 354 (6348) : 56 - 58
  • [9] Heat transfer characteristics of expanded graphite matrices in metal hydride beds
    Klein, HP
    Groll, M
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2004, 29 (14) : 1503 - 1511
  • [10] Simulation of thermal conductivity and heat transport in solids
    Oligschleger, C
    Schön, JC
    [J]. PHYSICAL REVIEW B, 1999, 59 (06) : 4125 - 4133