A successive ionic layer adsorption and reaction (SILAR) method to fabricate a layer-by-layer (LbL) MnO2-reduced graphene oxide assembly for supercapacitor application

被引:48
|
作者
Jana, Milan [1 ,2 ]
Saha, Sanjit [1 ,2 ]
Samanta, Pranab [1 ,2 ]
Murmu, Naresh Chandra [1 ,2 ]
Kim, Nam Hoon [3 ,4 ]
Kuila, Tapas [1 ,2 ]
Lee, Joong Hee [3 ,4 ,5 ]
机构
[1] CSIR, Cent Mech Engn Res Inst, Surface Engn & Tribol Div, Durgapur 713209, India
[2] CSIR CMERI Campus, Acad Sci & Innovat Res AcSIR, Durgapur 713209, India
[3] Chonbuk Natl Univ, Adv Mat Inst BIN Convergence Technol Plus Global, Jeonju 54896, Jeonbuk, South Korea
[4] Chonbuk Natl Univ, Dept BIN Convergence Technol, Jeonju 54896, Jeonbuk, South Korea
[5] Chonbuk Natl Univ, Dept Polymer & Nanosci & Technol, Carbon Composite Res Ctr, Jeonju 54896, Jeonbuk, South Korea
关键词
Layer-by-layer assembly; Supercapacitor; Asymmetric device; Energy density; Power density; HIGH-PERFORMANCE SUPERCAPACITOR; ASSISTED SYNTHESIS; ENERGY DENSITY; COMPOSITES; ELECTRODES; FACILE; MNO2; NANOCOMPOSITE; MNO2-GRAPHENE; CAPACITANCE;
D O I
10.1016/j.jpowsour.2016.11.096
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A facile, cost effective and additive-free successive ionic layer adsorption and reaction (SILAR) technique is demonstrated to develop layer-by-layer (LbL) assembly of reduced graphene oxide (RGO) and MnO2 (MnO2-RGO(SILAR)) on a stainless steel current collector, for designing light-weight and small size super capacitor electrode. The transmission electron microscopy and field emission scanning electron microscopy images shows uniform distribution of RGO and MnO2 in the MnO2-RGO(SILAR). The LbL (MnO2-RGO(SILAR)) demonstrates improved physical and electrochemical properties over the hydrothermally prepared MnO2-RGO (MnO2-RGO(Hydro)). The electrochemical environment of MnO2-RGO(SILAR) is explained by constant phase element in the high frequency region, and a Warburg element in the low frequency region in the Z-View fitted Nyquist plot. The equivalent circuit of the MnO2-RGO(Hydro), displays the coexistence of EDL and constant phase element, indicating inhomogeneous distribution of MnO2 and RGO by the hydrothermal technique. An asymmetric supercapacitor device is designed with MnO2-RGO(SILAR) as positive electrode, and thermally reduced GO (TRGO) as negative electrode. The designed cell exhibits high energy density of similar to 88 Wh kg(-1), elevated power density of similar to 23,200 W kg(-1), and similar to 79% retention in capacitance after 10,000 charge-discharge cycles. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:380 / 392
页数:13
相关论文
共 50 条
  • [1] Synthesis of samarium telluride thin films by successive ionic layer adsorption and reaction (SILAR) method for supercapacitor application
    Kumbhar, V. S.
    Lokhande, A. C.
    Gaikwad, N. S.
    Lokhande, C. D.
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2016, 46 : 29 - 34
  • [2] Synthesis of polythiophene thin films by simple successive ionic layer adsorption and reaction (SILAR) method for supercapacitor application
    Patil, B. H.
    Jagadale, A. D.
    Lokhande, C. D.
    SYNTHETIC METALS, 2012, 162 (15-16) : 1400 - 1405
  • [3] Growth of polyaniline nanofibers for supercapacitor applications using successive ionic layer adsorption and reaction (SILAR) method
    P. R. Deshmukh
    S. N. Pusawale
    N. M. Shinde
    C. D. Lokhande
    Journal of the Korean Physical Society, 2014, 65 : 80 - 86
  • [4] Growth of polyaniline nanofibers for supercapacitor applications using successive ionic layer adsorption and reaction (SILAR) method
    Deshmukh, P. R.
    Pusawale, S. N.
    Shinde, N. M.
    Lokhande, C. D.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2014, 65 (01) : 80 - 86
  • [5] Surface modification of reduced graphene oxide through successive ionic layer adsorption and reaction method for redox dominant supercapacitor electrodes
    Jana, Milan
    Samanta, Pranab
    Murmu, Naresh Chandra
    Kuila, Tapas
    CHEMICAL ENGINEERING JOURNAL, 2017, 330 : 914 - 925
  • [6] Growth of Ni-Co binary hydroxide on a reduced graphene oxide surface by a successive ionic layer adsorption and reaction (SILAR) method for high performance asymmetric supercapacitor electrodesle
    Jana, Milan
    Saha, Sanjit
    Samanta, Pranab
    Murmu, Naresh Chandra
    Kim, Nam Hoon
    Kuila, Tapas
    Lee, Joong Hee
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (06) : 2188 - 2197
  • [7] Automation of the successive ionic layer adsorption and reaction -SILAR- process
    Valdez-Martinez, J. S.
    Meneses-Arcos, M. A.
    Calixto-Rodriguez, M.
    Rumbo-Morales, J. Y.
    Beltran-Escobar, M. A.
    Villanueva-Tavira, J.
    Sarmiento-Bustos, E.
    REVISTA MEXICANA DE INGENIERIA QUIMICA, 2020, 19 (03): : 1351 - 1361
  • [8] Growth of Cu thin films by the successive ionic layer adsorption and reaction (SILAR) method
    Lindroos, S
    Ruuskanen, T
    Ritala, M
    Leskelä, M
    THIN SOLID FILMS, 2004, 460 (1-2) : 36 - 40
  • [9] Fabrication of SnS thin films by the successive ionic layer adsorption and reaction (SILAR) method
    Ghosh, Biswajit
    Das, Madhumita
    Banerjee, Pushan
    Das, Subrata
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2008, 23 (12)
  • [10] Deposition of CdS thin films by the successive ionic layer adsorption and reaction (SILAR) method
    Sankapal, BR
    Mane, RS
    Lokhande, CD
    MATERIALS RESEARCH BULLETIN, 2000, 35 (02) : 177 - 184