Topological states on the gold surface

被引:100
|
作者
Yan, Binghai [1 ,2 ,3 ]
Stadtmueller, Benjamin [4 ,5 ]
Haag, Norman [4 ,5 ]
Jakobs, Sebastian [4 ,5 ]
Seidel, Johannes [4 ,5 ]
Jungkenn, Dominik [4 ,5 ]
Mathias, Stefan [6 ]
Cinchetti, Mirko [4 ,5 ]
Aeschlimann, Martin [4 ,5 ]
Felser, Claudia [1 ]
机构
[1] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany
[2] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[3] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 200031, Peoples R China
[4] Univ Kaiserslautern, Dept Phys, D-67653 Kaiserslautern, Germany
[5] Univ Kaiserslautern, Res Ctr OPTIMAS, D-67653 Kaiserslautern, Germany
[6] Univ Gottingen, Inst Phys 1, D-37077 Gottingen, Germany
来源
NATURE COMMUNICATIONS | 2015年 / 6卷
关键词
SINGLE DIRAC CONE; ELECTRONIC-STRUCTURE; QUANTUM CORRALS; ENERGY SHIFTS; IMAGE STATES; PHOTOEMISSION; BAND; INSULATOR; RECONSTRUCTION; CONFINEMENT;
D O I
10.1038/ncomms10167
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gold surfaces host special electronic states that have been understood as a prototype of Shockley surface states. These surface states are commonly employed to benchmark the capability of angle-resolved photoemission spectroscopy (ARPES) and scanning tunnelling spectroscopy. Here we show that these Shockley surface states can be reinterpreted as topologically derived surface states (TDSSs) of a topological insulator (TI), a recently discovered quantum state. Based on band structure calculations, the Z(2)-type invariants of gold can be well-defined to characterize a TI. Further, our ARPES measurement validates TDSSs by detecting the dispersion of unoccupied surface states. The same TDSSs are also recognized on surfaces of other well-known noble metals (for example, silver, copper, platinum and palladium), which shines a new light on these long-known surface states.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Topological states on the gold surface
    Binghai Yan
    Benjamin Stadtmüller
    Norman Haag
    Sebastian Jakobs
    Johannes Seidel
    Dominik Jungkenn
    Stefan Mathias
    Mirko Cinchetti
    Martin Aeschlimann
    Claudia Felser
    Nature Communications, 6
  • [2] Surface states of topological insulators
    Zhang, Fan
    Kane, C. L.
    Mele, E. J.
    PHYSICAL REVIEW B, 2012, 86 (08):
  • [3] Understanding surface states of topological insulators
    Pankratov, O. A.
    PHYSICS-USPEKHI, 2018, 61 (11) : 1116 - 1126
  • [4] Quantum light and topological surface states
    Dai, C. M.
    Wang, W.
    Yi, X. X.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2017, 50 (23)
  • [5] Topological Insulator: Surface Localized States
    Ovchinnikov, Yu. N.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2019, 32 (05) : 1327 - 1331
  • [6] Protection of surface states in topological nanoparticles
    Siroki, Gleb
    Haynes, Peter D.
    Lee, Derek K. K.
    Giannini, Vincenzo
    PHYSICAL REVIEW MATERIALS, 2017, 1 (02):
  • [7] Topological semimetals with helicoid surface states
    Chen Fang
    Ling Lu
    Junwei Liu
    Liang Fu
    Nature Physics, 2016, 12 : 936 - 941
  • [8] Surface and edge states in topological semimetals
    Chu, Rui-Lin
    Shan, Wen-Yu
    Lu, Jie
    Shen, Shun-Qing
    PHYSICAL REVIEW B, 2011, 83 (07)
  • [9] Topological Insulator: Surface Localized States
    Yu. N. Ovchinnikov
    Journal of Superconductivity and Novel Magnetism, 2019, 32 : 1327 - 1331
  • [10] Topological surface states scattering in antimony
    Narayan, Awadhesh
    Rungger, Ivan
    Sanvito, Stefano
    PHYSICAL REVIEW B, 2012, 86 (20):