Efficient Computation of Galois Field Expressions on Hybrid CPU-GPU Platforms

被引:0
|
作者
Radmanovic, Milos M. [1 ]
Gajic, Dusan B. [1 ]
Stankovic, Radomir S. [1 ]
机构
[1] Univ Nis, Dept Comp Sci, Fac Elect Engn, A Medvedeva 14, Nish 18000, Serbia
关键词
Multiple-valued logic; spectral methods; fast Fourier transform; Galois field expressions; parallel algorithms; GPU computing; DESIGN;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an efficient method for the computation of Galois field (GF) expressions for multiple-valued logic functions. The algorithm is based on the partitioning of the input function vector and uses both CPUs (central processing units) and GPUs (graphics processing units) for performing the computations in parallel. After the first step of the fast Fourier transform (FFT)-like algorithm is performed on the CPU, the function vector is divided into disjoint subvectors that are further processed in parallel on the CPU and GPU. The proposed computational method reduces the time needed for computing the coefficients in the GF-expressions and, in this way, might extend the possibilities for their practical application. The experimental comparison of the proposed solution and previously used methods for computing GF-expressions for ternary and quaternary functions, confirms the validity of the method.
引用
收藏
页码:417 / 438
页数:22
相关论文
共 50 条
  • [1] Using Hybrid CPU-GPU Platforms to Accelerate the Computation of the Matrix Sign Function
    Benner, Peter
    Ezzatti, Pablo
    Quintana-Orti, Enrique S.
    Remon, Alfredo
    EURO-PAR 2009 PARALLEL PROCESSING WORKSHOPS, 2010, 6043 : 132 - +
  • [2] A Efficient Algorithm for Molecular Dynamics Simulation on Hybrid CPU-GPU Computing Platforms
    Li, Dapu
    Ai, Wei
    Ye, Yu
    Liang, Jie
    2016 12TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2016, : 1357 - 1363
  • [3] Optimizing tensor contraction expressions for hybrid CPU-GPU execution
    Wenjing Ma
    Sriram Krishnamoorthy
    Oreste Villa
    Karol Kowalski
    Gagan Agrawal
    Cluster Computing, 2013, 16 : 131 - 155
  • [4] Optimizing tensor contraction expressions for hybrid CPU-GPU execution
    Ma, Wenjing
    Krishnamoorthy, Sriram
    Villa, Oreste
    Kowalski, Karol
    Agrawal, Gagan
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2013, 16 (01): : 131 - 155
  • [5] Hybrid CPU-GPU Computation of Adjoint Derivatives in Time Domain
    Statz, Christoph
    Muetze, Marco
    Hegler, Sebastian
    Plettemeier, Dirk
    2013 COMPUTATIONAL ELECTROMAGNETICS WORKSHOP (CEM'13), 2013, : 32 - 33
  • [6] High Performance Graph Analytics with Productivity on Hybrid CPU-GPU Platforms
    Yang, Haoduo
    Su, Huayou
    Lan, Qiang
    Wen, Mei
    Zhang, Chunyuan
    2018 2ND INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPILATION, COMPUTING AND COMMUNICATIONS (HP3C 2018), 2018, : 17 - 21
  • [7] Solving Sparse Differential Riccati Equations on Hybrid CPU-GPU Platforms
    Benner, Peter
    Dufrechou, Ernesto
    Ezzatti, Pablo
    Mena, Hermann
    Quintana-Orti, Enrique S.
    Remon, Alfredo
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2017, PT I, 2017, 10404 : 116 - 132
  • [8] GSched: An efficient scheduler for hybrid CPU-GPU HPC systems
    Mateos, Mariano Raboso
    Robles, Juan Antonio Cotobal
    1600, Springer Verlag (217): : 179 - 185
  • [9] Extending LYAPACK for the solution of band Lyapunov equations on hybrid CPU-GPU platforms
    Benner, Peter
    Remon, Alfredo
    Dufrechou, Ernesto
    Ezzatti, Pablo
    Quintana-Orti, Enrique S.
    JOURNAL OF SUPERCOMPUTING, 2015, 71 (02): : 740 - 750
  • [10] Efficient graph computation on hybrid CPU and GPU systems
    Tao Zhang
    Jingjie Zhang
    Wei Shu
    Min-You Wu
    Xiaoyao Liang
    The Journal of Supercomputing, 2015, 71 : 1563 - 1586