Simultaneous Feedback Edge Set: A Parameterized Perspective

被引:2
|
作者
Agrawal, Akanksha [1 ,2 ]
Panolan, Fahad [1 ,3 ]
Saurabh, Saket [4 ]
Zehavi, Meirav [1 ,2 ]
机构
[1] Univ Bergen, Dept Informat, Bergen, Norway
[2] Ben Gurion Univ Negev, Beer Sheva, Israel
[3] IIT Hyderabad, Dept Comp Sci & Engn, Sangareddy, India
[4] HBNI, Inst Math Sci, Chennai, Tamil Nadu, India
基金
欧洲研究理事会;
关键词
Parameterized complexity; Feedback edge set; alpha-matroid parity;
D O I
10.1007/s00453-020-00773-9
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Agrawal et al. (ACM Trans Comput Theory 10(4):18:1-18:25, 2018. https://doi. org/10.1145/3265027) studied a simultaneous variant of the classic FEEDBACK Vertex Set problem, called Simultaneous Feedback Vertex Set (Sim-FVS). Here, we consider the edge variant of the problem, namely, Simultaneous Feedback Edge SET (SIM-FES). In this problem, the input is an n-vertex graph G, a positive integer k, and a coloring function col: E(G) -> 2([alpha]), and the objective is to check whether there is an edge subset S of cardinality k in G such that for each i is an element of [alpha], G(i) - S is acyclic. Unlike the vertex variant of the problem, when alpha = 1, the problem is equivalent to finding a maximal spanning forest and hence it is polynomial time solvable. We show that for alpha = 3, Sim-FES is NP-hard, and does not admit an algorithm of running time 2(o(k))n(O(1)) unless ETH fails. This hardness result is complimented by an FPT algorithm for Sim-FES running in time 2(omega k alpha+alpha log k)n(O(1)) where omega is the exponent in the running time of matrix multiplication. The same algorithm gives a polynomial time algorithm for the case when alpha = 2. We also give a kernel for Sim-FES with (k alpha)(O(alpha)) vertices. Finally, we consider a "dual" version of the problem called Maximum Simultaneous Acyclic Subgraph and give an FPT algorithm with running time 2(omega q alpha) n(O(1)), where q is the number of edges in the output subgraph.
引用
收藏
页码:753 / 774
页数:22
相关论文
共 50 条
  • [1] Simultaneous Feedback Edge Set: A Parameterized Perspective
    Akanksha Agrawal
    Fahad Panolan
    Saket Saurabh
    Meirav Zehavi
    Algorithmica, 2021, 83 : 753 - 774
  • [2] Simultaneous Feedback Vertex Set: A Parameterized Perspective
    Agrawal, Akanksha
    Lokshtanov, Daniel
    Mouawad, Amer E.
    Saurabh, Saket
    33RD SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2016), 2016, 47
  • [3] Simultaneous Feedback Vertex Set: A Parameterized Perspective
    Agrawal, Akanksha
    Lokshtanov, Daniel
    Mouawad, Amer E.
    Saurabh, Saket
    ACM TRANSACTIONS ON COMPUTATION THEORY, 2018, 10 (04)
  • [4] A Faster Parameterized Algorithm for Group Feedback Edge Set
    Ramanujan, M. S.
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, WG 2016, 2016, 9941 : 269 - 281
  • [5] Two-Layer Planarization parameterized by feedback edge set
    Uhlmann, Johannes
    Weller, Mathias
    THEORETICAL COMPUTER SCIENCE, 2013, 494 : 99 - 111
  • [6] Two-Layer Planarization Parameterized by Feedback Edge Set
    Uhlmann, Johannes
    Weller, Mathias
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, PROCEEDINGS, 2010, 6108 : 431 - 442
  • [7] On Parameterized Independent Feedback Vertex Set
    Misra, Neeldhara
    Philip, Geevarghese
    Raman, Venkatesh
    Saurabh, Saket
    THEORETICAL COMPUTER SCIENCE, 2012, 461 : 65 - 75
  • [8] Parameterized algorithms for feedback vertex set
    Kanj, I
    Pelsmajer, M
    Schaefer, M
    PARAMETERIZED AND EXACT COMPUTATION, PROCEEDINGS, 2004, 3162 : 235 - 247
  • [9] MIXED DOMINATING Set: A Parameterized Perspective
    Jain, Pallavi
    Jayakrishnan, M.
    Panolan, Fahad
    Sahu, Abhishek
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2017), 2017, 10520 : 330 - 343
  • [10] Mixed dominating set: A parameterized perspective
    Jain, Pallavi
    Jayakrishnan, M.
    Panolan, Fahad
    Sahu, Abhishek
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017, 10520 LNCS : 330 - 343