Thermal probing of energy dissipation in current-carrying carbon nanotubes

被引:84
|
作者
Shi, Li [1 ,2 ]
Zhou, Jianhua [1 ,2 ]
Kim, Philip [3 ]
Bachtold, Adrian [4 ]
Majumdar, Arun [5 ,6 ]
McEuen, Paul L. [7 ]
机构
[1] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Ctr Nano & Mol Sci & Technol, Austin, TX 78712 USA
[3] Columbia Univ, Dept Phys, New York, NY 10027 USA
[4] Campus Univ Autonoma Barcelona, Inst Catala Nanotecnol, CSIC, Ctr Invest Nanociencia & Nanotecnol, E-08193 Barcelona, Spain
[5] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
[7] Cornell Univ, Atom & Solid State Phys Lab, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
carbon nanotubes; scanning probe microscopy; temperature distribution; thermal conductivity; thermal diffusivity; TRANSPORT; SCATTERING; CONDUCTIVITY; ABSENCE; VOLTAGE; PHASE;
D O I
10.1063/1.3126708
中图分类号
O59 [应用物理学];
学科分类号
摘要
The temperature distributions in current-carrying carbon nanotubes have been measured with a scanning thermal microscope. The obtained temperature profiles reveal diffusive and dissipative electron transport in multiwalled nanotubes and in single-walled nanotubes when the voltage bias was higher than the 0.1-0.2 eV optical phonon energy. Over 90% of the Joule heat in a multiwalled nanotube was found to be conducted along the nanotube to the two metal contacts. In comparison, about 80% of the Joule heat was transferred directly across the nanotube-substrate interface for single-walled nanotubes. The average temperature rise in the nanotubes is determined to be in the range of 5-42 K per microwatt Joule heat dissipation in the nanotubes.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Current-carrying capacity of carbon nanotubes
    Anantram, MP
    PHYSICAL REVIEW B, 2000, 62 (08): : R4837 - R4840
  • [2] Current-carrying capacity of semiconducting carbon nanotubes
    Chen, Yung-Fu
    Fuhrer, Michael S.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2006, 243 (13): : 3403 - 3407
  • [3] Current-carrying capacity of double-wall carbon nanotubes
    Moon, Sunkyung
    Song, Woon
    Kim, Nam
    Lee, Joon Sung
    Na, Pil Sun
    Lee, Soon-Gul
    Park, Jongwan
    Jung, Myung-Hwa
    Lee, Hyun-Woo
    Kang, Kicheon
    Lee, Cheol Jin
    Kim, Jinhee
    NANOTECHNOLOGY, 2007, 18 (23)
  • [5] LINEAR MECHANISM FOR THERMAL ENERGY TRANSPORT IN CURRENT-CARRYING PLASMAS
    COPPI, B
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1970, 15 (11): : 1427 - &
  • [6] Mesoscopic thermal transport and energy dissipation in carbon nanotubes
    Kim, P
    Shi, L
    Majumdar, A
    McEuen, PL
    PHYSICA B-CONDENSED MATTER, 2002, 323 (1-4) : 67 - 70
  • [7] Current-carrying capacity of carbon nanofiber interconnects
    Kitsuki, Hirohiko
    Saito, Tsutomu
    Yamada, Toshishige
    Fabris, Drazen
    Jameson, John R.
    Wilhite, Patrick
    Suzuki, Makoto
    Yang, Cary Y.
    PROCEEDINGS OF THE IEEE 2008 INTERNATIONAL INTERCONNECT TECHNOLOGY CONFERENCE, 2008, : 43 - 45
  • [8] Energy release in the current-carrying magnetic loops
    Zaitsev, VV
    MAGNETODYNAMIC PHENOMENA IN THE SOLAR ATMOSPHERE: PROTOTYPES OF STELLAR MAGNETIC ACTIVITY, 1996, : 317 - 318
  • [9] Thermal and electrodynamic effects in melting current-carrying conductors
    Dolinsky, Y
    Elperin, T
    JOURNAL OF APPLIED PHYSICS, 1996, 80 (01) : 38 - 45
  • [10] Cooling effect of thermal bias on a current-carrying nanodevice
    Zhou, Li-Ling
    Li, Yong-Jun
    Zhou, Xue-Yun
    PHYSICS LETTERS A, 2014, 378 (45) : 3393 - 3396