Existence and strong consistency of maximum likelihood estimates for 1-dimensional exponential families

被引:1
|
作者
Miao, WW
Hahn, MG
机构
[1] MT HOLYOKE COLL,DEPT MATH,S HADLEY,MA 01075
[2] TUFTS UNIV,DEPT MATH,MEDFORD,MA 02155
基金
美国国家科学基金会;
关键词
maximum likelihood; strong consistency; exponential families; steep exponential families;
D O I
10.1016/0167-7152(95)00075-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The paper focuses on existence, in the sense of Hoffmann-Jorgensen, of the maximum likelihood estimate (MLE) of the parameter for 1-dimensional exponential families. It is established that the MLE exists in most cases.
引用
收藏
页码:9 / 21
页数:13
相关论文
共 50 条
  • [1] Existence of maximum likelihood estimates for multi-dimensional exponential families
    Miao, WW
    Hahn, M
    SCANDINAVIAN JOURNAL OF STATISTICS, 1997, 24 (03) : 371 - 386
  • [2] On existence of maximum likelihood estimators in exponential families
    Bogdan, K
    Bogdan, M
    STATISTICS, 2000, 34 (02) : 137 - 149
  • [3] Generalized maximum likelihood estimates for exponential families
    Csiszar, Imre
    Matus, Frantisek
    PROBABILITY THEORY AND RELATED FIELDS, 2008, 141 (1-2) : 213 - 246
  • [4] Generalized maximum likelihood estimates for exponential families
    Csiszar, Imre
    Matus, Frantisek
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 1939 - +
  • [5] Generalized maximum likelihood estimates for exponential families
    Imre Csiszár
    František Matúš
    Probability Theory and Related Fields, 2008, 141 : 213 - 246
  • [6] Maximum likelihood estimates for exponential type density families
    IBM Thomas J. Watson Research Cent, Yorktown Heights, United States
    ICASSP IEEE Int Conf Acoust Speech Signal Process Proc, (361-364):
  • [7] Maximum likelihood estimates for exponential type density families
    Basu, S
    Micchelli, CA
    Olsen, PA
    ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 361 - 364
  • [8] HOW TO PROVE STRONG CONSISTENCY OF MAXIMUM LIKELIHOOD ESTIMATES
    RANNEBY, B
    ADVANCES IN APPLIED PROBABILITY, 1977, 9 (02) : 230 - 230
  • [9] The strong consistency for maximum likelihood estimates: a proof not based on the likelihood ratio
    Fiorin, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (09): : 721 - 726
  • [10] Information closure of exponential families and generalized maximum likelihood estimates
    Csiszár, I
    Matús, F
    ISIT: 2002 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2002, : 434 - 434