RAVEN: Resource Allocation Using Reinforcement Learning for Vehicular Edge Computing Networks

被引:2
|
作者
Zhang, Yanhao [1 ]
Abhishek, Nalam Venkata [2 ]
Gurusamy, Mohan [1 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 569830, Singapore
[2] Singapore Inst Technol, Infocomm Technol Cluster, Singapore 567739, Singapore
关键词
Servers; Switches; Resource management; Task analysis; Markov processes; Reinforcement learning; Delays; Resource allocation; Markov decision process; reinforcement learning; vehicular edge computing;
D O I
10.1109/LCOMM.2022.3196711
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Vehicular Edge Computing (VEC) enables vehicles to offload tasks to the road side units (RSUs) to improve the task performance and user experience. However, blindly offloading the vehicle's tasks might not be an efficient solution. Such a scheme may overload the resources available at the RSU, increase the number of requests rejected, and decrease the system utility by engaging more servers than required. This letter proposes a Markov Decision Process based Reinforcement Learning (RL) method to allocate resources at the RSU. The RL algorithm aims to train the RSU in optimizing its resource allocation by varying the resource allocation scheme according to the total task demands generated by the traffic. The results demonstrate the effectiveness of the proposed method.
引用
收藏
页码:2636 / 2640
页数:5
相关论文
共 50 条
  • [1] Resource Allocation for Edge Computing in IoT Networks via Reinforcement Learning
    Liu, Xiaolan
    Qin, Zhijin
    Gao, Yue
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [2] A Power Allocation Algorithm in Vehicular Edge Computing Networks Based on Deep Reinforcement Learning
    Qiu B.
    Wang Y.
    Xiao H.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2024, 47 (02): : 81 - 89
  • [3] Intelligent and Decentralized Resource Allocation in Vehicular Edge Computing Networks
    Karimi E.
    Chen Y.
    Akbari B.
    IEEE Internet of Things Magazine, 2023, 6 (04): : 112 - 117
  • [4] Deep Reinforcement Learning for Offloading and Resource Allocation in Vehicle Edge Computing and Networks
    Liu, Yi
    Yu, Huimin
    Xie, Shengli
    Zhang, Yan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (11) : 11158 - 11168
  • [5] Federated deep reinforcement learning for task offloading and resource allocation in mobile edge computing-assisted vehicular networks
    Zhao, Xu
    Wu, Yichuan
    Zhao, Tianhao
    Wang, Feiyu
    Li, Maozhen
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2024, 229
  • [6] Joint Offloading and Resource Allocation in Vehicular Edge Computing and Networks
    Dai, Yueyue
    Xu, Du
    Maharjan, Sabita
    Zhang, Yan
    2018 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2018,
  • [7] Asynchronous Deep Reinforcement Learning for Collaborative Task Computing and On-Demand Resource Allocation in Vehicular Edge Computing
    Liu L.
    Feng J.
    Mu X.
    Pei Q.
    Lan D.
    Xiao M.
    IEEE Transactions on Intelligent Transportation Systems, 2023, 24 (12) : 15513 - 15526
  • [8] Multi-agent deep reinforcement learning-based partial offloading and resource allocation in vehicular edge computing networks
    Xue, Jianbin
    Wang, Luyao
    Yu, Qingda
    Mao, Peipei
    COMPUTER COMMUNICATIONS, 2025, 234
  • [9] Resource Allocation for Vehicular Fog Computing Using Reinforcement Learning Combined with Heuristic Information
    Lee, Sukyoung (sklee@yonsei.ac.kr), 1600, Institute of Electrical and Electronics Engineers Inc., United States (07):
  • [10] Resource Allocation for Vehicular Fog Computing Using Reinforcement Learning Combined With Heuristic Information
    Lee, Seung-seob
    Lee, SuKyoung
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (10): : 10450 - 10464