Strain tunable ferroelectricity of SnSe/SnTe van der Waals heterostructures

被引:11
|
作者
Guo, Hao [1 ]
Tian, Xiaobao [1 ]
Fan, Haidong [1 ]
Jiang, Wentao [1 ]
机构
[1] Sichuan Univ, Dept Mech & Engn, Chengdu 610065, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
IVA-monochalcogenides; van der Waals heterostructures; Ferroelectricity; Strain engineering; First-principles calculations;
D O I
10.1016/j.spmi.2020.106728
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Two-dimensional (2D) van der Waals heterostructures (vdWHs) have attracted significant attention due to their potential applications in nanoscale electronic devices. Based on the firstprinciples calculations, we design the SnSe/SnTe and SnSe/SnTe/SnSe vdWHs with dynamical stability and thermal stability and investigate their mechanical and electronic properties. We find that the SnSe/SnTe and SnSe/SnTe/SnSe vdWHs have better flexibility than other 2D vdWHs. The SnSe/SnTe and SnSe/SnTe/SnSe vdWHs show reduced direct bandgap and indirect bandgap, respectively. They can also realize the transition between direct and indirect bandgap, and even exhibit the metallic property under external strains. Furthermore, the SnSe/SnTe and SnSe/SnTe/ SnSe vdWHs exhibit stable ferroelectric spontaneous polarizations with small potential barriers. The ferroelectric spontaneous polarization of SnSe/SnTe vdWH increases rapidly as the biaxial tensile strain (<1%) increases, and then decreases slightly. Under the action of 1% biaxial tensile strain, the SnSe/SnTe vdWH has the largest ferroelectric spontaneous polarization 1.721 x 10(-10) C/m and a smaller potential barrier 7.593 meV. Our work confirms that IVA-monochalcogenides vdWHs have tunable ferroelectric spontaneous polarization, which can provide new clues for the study and application of novel 2D ferroelectric heterostructures.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Reproduced out-of-plane ferroelectricity in monolayer SnTe van der Waals heterostructures
    Song, Wenjing
    Cao, Wang
    Zhao, Wei
    Ding, Jianwen
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2023, 35 (35)
  • [2] Ferroelectricity with concomitant Coulomb screening in van der Waals heterostructures
    Niu, Ruirui
    Li, Zhuoxian
    Han, Xiangyan
    Qu, Zhuangzhuang
    Liu, Qianling
    Wang, Zhiyu
    Han, Chunrui
    Wang, Chunwen
    Wu, Yangliu
    Yang, Chendi
    Lv, Ming
    Yang, Kaining
    Watanabe, Kenji
    Taniguchi, Takashi
    Liu, Kaihui
    Mao, Jinhai
    Shi, Wu
    Che, Renchao
    Zhou, Wu
    Xue, Jiamin
    Wu, Menghao
    Peng, Bo
    Han, Zheng Vitto
    Gan, Zizhao
    Lu, Jianming
    NATURE NANOTECHNOLOGY, 2025, : 346 - 352
  • [3] Strain engineering of van der Waals heterostructures
    Vermeulen, Paul A.
    Mulder, Jefta
    Momand, Jamo
    Kooi, Bart J.
    NANOSCALE, 2018, 10 (03) : 1474 - 1480
  • [4] Vertical strain engineering of Van der Waals heterostructures
    Bian, Jinbo
    Xu, Zhiping
    NANOTECHNOLOGY, 2023, 34 (28)
  • [5] Tunable Phases of Moire Excitons in van der Waals Heterostructures
    Brem, Samuel
    Linderalv, Christopher
    Erhart, Paul
    Malic, Ermin
    NANO LETTERS, 2020, 20 (12) : 8534 - 8540
  • [6] Tunable Contacts in Graphene/InSe van der Waals Heterostructures
    Yang, Xuhui
    Sa, Baisheng
    Lin, Peng
    Xu, Chao
    Zhu, Qiang
    Zhan, Hongbing
    Sun, Zhimei
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (43): : 23699 - 23706
  • [7] Ferroelectric Semimetals with α-Bi / SnSe van der Waals Heterostructures and Their Topological Currents
    de Sousa, D. J. P.
    Lee, Seungjun
    Lu, Qiangsheng
    Moore, Rob G.
    Brahlek, Matthew
    Wang, J. -P.
    Bian, Guang
    Low, Tony
    PHYSICAL REVIEW LETTERS, 2024, 133 (14)
  • [8] Van der Waals heterostructures
    Barnes, Natalie
    NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01):
  • [9] Van der Waals heterostructures
    Geim, A. K.
    Grigorieva, I. V.
    NATURE, 2013, 499 (7459) : 419 - 425
  • [10] Van der Waals heterostructures
    Nature Reviews Methods Primers, 2