Curvature-based, time delayed feedback as a means for self-propelled swimming

被引:5
|
作者
Gross, David [1 ,2 ]
Roux, Yann [1 ]
Argentina, Mederic [2 ]
机构
[1] K Epsilon SARL, 1300 Route Cretes, F-06560 Valbonne, France
[2] Univ Cote dAzur, CNRS, INPHYNI, Nice, France
关键词
Swimming; Muscle activation; Proprioception; Vortex panel; SPEED; FISH; MODEL; KINEMATICS; STABILITY; MECHANICS; SIZE; GAIT;
D O I
10.1016/j.jfluidstructs.2019.01.023
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The development of bio-inspired robotics has led to an increasing need to understand the strongly coupled fluid-structure and control problem presented by swimming. Usually, the mechanical forcing of muscles is modeled with an imposed distribution of bending moments along the swimmer's body. A simple way to exploit this idea is to define a central pattern forcing for this active driving, but this approach is not completely satisfactory because locomotion results from the interaction of the organism and its surroundings. Gazzola et al. (2015) have proposed that a curvature-based feedback with a time delay can trigger self-propulsion for a swimmer without necessitating such a pre-defined forcing. In the present work, we implement this feedback within a numerical model. We represent the swimmer as a thin elastic beam using a finite element representation which is coupled to an unsteady boundary element method for the resolution of the fluid domain. The model is first benchmarked on a flexible foil in forced leading edge heave. To recover previous findings, an imposed traveling bending moment wave is then used to drive the swimmer which yields peaks in the mean forward velocity when the driving frequency corresponds to the natural frequencies of the elastic structure. Delayed, curvature-based feedback is then applied to the swimmer and produces peaks in the velocity for delays that differ from the natural periods, associated to its deformations modes. Finally, a simplified model is shown to qualitatively describe the origin of the peaks observed in the feedback swimmer. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:124 / 134
页数:11
相关论文
共 50 条
  • [1] Self-propelled swimming droplets
    Dwivedi, Prateek
    Pillai, Dipin
    Mangal, Rahul
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2022, 61
  • [2] Swimming dynamics of a self-propelled droplet
    Li, Gaojin
    JOURNAL OF FLUID MECHANICS, 2022, 934
  • [3] An energetics analysis of fish self-propelled swimming
    ZhongWei Wang
    YongLiang Yu
    BingGang Tong
    Science China(Physics,Mechanics & Astronomy), 2018, (07) : 95 - 98
  • [4] An energetics analysis of fish self-propelled swimming
    Wang, ZhongWei
    Yu, YongLiang
    Tong, BingGang
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2018, 61 (07)
  • [5] Computation of self-propelled swimming in larva fishes
    Katumata, Yohei
    Müller, Ulrike K.
    Liu, Hao
    Journal of Biomechanical Science and Engineering, 2009, 4 (01): : 54 - 66
  • [6] An energetics analysis of fish self-propelled swimming
    ZhongWei Wang
    YongLiang Yu
    BingGang Tong
    Science China Physics, Mechanics & Astronomy, 2018, 61
  • [7] Swimming upstream: self-propelled nanodimer motors in a flow
    Tao, Yu-Guo
    Kapral, Raymond
    SOFT MATTER, 2010, 6 (04) : 756 - 761
  • [8] Swarm behavior of self-propelled rods and swimming flagella
    Yang, Yingzi
    Marceau, Vincent
    Gompper, Gerhard
    PHYSICAL REVIEW E, 2010, 82 (03)
  • [9] Numerical simulation of the hydrodynamics of self-propelled fish swimming
    Wang, L. (wangliang49101@163.com), 1600, Chinese Journal of Theoretical and Applied Mechanics Press (44):
  • [10] Feedback control of an ensemble of self-propelled particles
    Wu, Jian-chun
    Chen, Qun
    Wang, Rang
    Ai, Bao-quan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 428 : 273 - 278