δ#(2;2)-Ideal Centroaffine Hypersurfaces of Dimension 5

被引:2
|
作者
Yildirim, Handan [1 ]
Vrancken, Luc [2 ,3 ]
机构
[1] Istanbul Univ, Fac Sci, Dept Math, TR-34134 Istanbul, Turkey
[2] Univ Valenciennes, LAMAV, Campus Mt Houy, F-59313 Valenciennes 9, France
[3] Katholieke Univ Leuven, Dept Wiskunde, Celestijnenlaan 200B, B-3001 Leuven, Belgium
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2017年 / 21卷 / 02期
关键词
SATISFYING CHENS EQUALITY; COMPLEX-SPACE FORMS; LAGRANGIAN SUBMANIFOLDS; CLASSIFICATION; DELTA(2,2); IMMERSIONS;
D O I
10.11650/tjm/7809
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of an ideal submanifold was introduced by Chen at the end of the last century. A survey of recent results in this area can be found in his book [9]. Recently, in [10], an optimal collection of Chen's inequalities was obtained for Lagrangian submanifolds in complex space forms. As shown in [2], these inequalities have an immediate counterpart in centroaffine diff erential geometry. Centroaffine hypersurfaces realising the equality in one of these inequalities are called ideal centroaffine hypersurfaces. So far, most results in this area have only been related with 3-and 4-dimensional delta(#)] (2)-ideal centroaffi ne hypersurfaces. The purpose of this paper is to classify delta(#)] (2;2)ideal hypersurfaces of dimension 5 in centroaffine differential geometry.
引用
收藏
页码:283 / 304
页数:22
相关论文
共 50 条
  • [1] δ#(2,2)-Ideal Centroaffine Hypersurfaces of Dimension 4
    Yildirim, Handan
    Vrancken, Luc
    TAIWANESE JOURNAL OF MATHEMATICS, 2023, 27 (06): : 1075 - 1104
  • [2] Pseudo-Isotropic Lorentzian Centroaffine Hypersurfaces 2
    Olivier Birembaux
    Lin Cao
    Results in Mathematics, 2022, 77
  • [3] Pseudo-Isotropic Lorentzian Centroaffine Hypersurfaces 2
    Birembaux, Olivier
    Cao, Lin
    RESULTS IN MATHEMATICS, 2022, 77 (04)
  • [4] Lightlike pseudo-isotropic centroaffine Lorentzian hypersurfaces of dimension 3
    Birembaux, Olivier
    Cao, Lin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 508 (02)
  • [5] Completeness of hyperbolic centroaffine hypersurfaces
    Cortes, V.
    Nardmann, M.
    Suhr, S.
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2016, 24 (01) : 59 - 92
  • [6] Classification of the Conformally Flat Centroaffine Hypersurfaces with Vanishing Centroaffine Shape Operator
    Miaoxin LEI
    Ruiwei XU
    Peibiao ZHAO
    Chinese Annals of Mathematics,Series B, 2025, (02) : 163 - 180
  • [7] Conformally flat centroaffine Tchebychev hypersurfaces
    Li, Cece
    Xu, Huiyang
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2024, 118 (03)
  • [8] Classification of the Conformally Flat Centroaffine Hypersurfaces with Vanishing Centroaffine Shape Operator
    Lei, Miaoxin
    Xu, Ruiwei
    Zhao, Peibiao
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2025, 46 (02) : 163 - 180
  • [9] On flat elliptic centroaffine Tchebychev hypersurfaces
    Zhao, Qian
    Cheng, Xiuxiu
    Hu, Zejun
    JOURNAL OF GEOMETRY AND PHYSICS, 2024, 198
  • [10] 2-Cycles sur les hypersurfaces cubiques de dimension 5
    Fu, Lie
    Tian, Zhiyu
    MATHEMATISCHE ZEITSCHRIFT, 2019, 293 (1-2) : 661 - 676