Ensemble Learning of Named Entity Recognition Algorithms using Multilayer Perceptron for the Multilingual Web of Data

被引:3
|
作者
Speck, Rene [1 ]
Ngomo, Axel-Cyrille Ngonga [2 ]
机构
[1] Univ Leipzig, Data Sci Grp, Augustuspl 10, D-04109 Leipzig, Germany
[2] Univ Paderborn, Data Sci Grp, Pohlweg 51, D-33098 Paderborn, Germany
基金
欧盟地平线“2020”;
关键词
Named Entity Recognition; Ensemble Learning; Multilingual; Semantic Web;
D O I
10.1145/3148011.3154471
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Implementing the multilingual Semantic Web vision requires transforming unstructured data in multiple languages from the Document Web into structured data for the multilingual Web of Data. We present the multilingual version of FOX, a knowledge extraction suite which supports this migration by providing named entity recognition based on ensemble learning for five languages. Our evaluation results show that our approach goes beyond the performance of existing named entity recognition systems on all five languages. In our best run, we outperform the state of the art by a gain of 32.38% F1-Score points on a Dutch dataset. More information and a demo can be found at http://fox.aksw.org as well as an extended version of the paper(1) descriping the evaluation in detail.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Ensemble Learning for Named Entity Recognition
    Speck, Rene
    Ngomo, Axel-Cyrille Ngonga
    SEMANTIC WEB - ISWC 2014, PT I, 2014, 8796 : 519 - 534
  • [2] Adaptive, multilingual named entity recognition in Web pages
    Petasis, G
    Karkaletsis, V
    Grover, C
    Hachey, B
    Pazienza, MT
    Vindigni, M
    Coch, J
    ECAI 2004: 16TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, 110 : 1073 - 1074
  • [3] Learning multilingual named entity recognition from Wikipedia
    Nothman, Joel
    Ringland, Nicky
    Radford, Will
    Murphy, Tara
    Curran, James R.
    ARTIFICIAL INTELLIGENCE, 2013, 194 : 151 - 175
  • [4] A multilingual Named Entity Recognition system using boosting and C4.5 decision tree learning algorithms
    Szarvas, Gyorgy
    Farkas, Richard
    Kocsor, Andras
    DISCOVERY SCIENCE, PROCEEDINGS, 2006, 4265 : 267 - 278
  • [5] Using WordNet Predicates for Multilingual Named Entity Recognition
    Negri, Matteo
    Magnini, Bernardo
    GWC 2004: SECOND INTERNATIONAL WORDNET CONFERENCE, PROCEEDINGS, 2003, : 169 - 174
  • [6] A named entity recognition model based on ensemble learning
    Zhu, Xinghui
    Zou, Zhuoyang
    Qiao, Bo
    Fang, Kui
    Chen, Yiming
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2021, 21 (02) : 475 - 486
  • [7] Multilingual Transformers for Named Entity Recognition
    Viksna, Rinalds
    Skadin, Inguna
    BALTIC JOURNAL OF MODERN COMPUTING, 2022, 10 (03): : 457 - 469
  • [8] Named Entity Recognition for Hungarian Using Various Machine Learning Algorithms
    Farkas, Richard
    Szarvast, Gyorgy
    Kocsor, Andras
    ACTA CYBERNETICA, 2006, 17 (03): : 633 - 646
  • [9] A Comparative Study of Named Entity Recognition for Arabic Using Ensemble Learning Approaches
    El bazi, Ismail
    Laachfoubi, Nabil
    2015 IEEE/ACS 12TH INTERNATIONAL CONFERENCE OF COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2015,
  • [10] Named Entity Recognition in Mammography Radiology Reports using a Multilingual Transfer Learning Approach
    Salazar Cabrera, Esteban Ricardo
    Santos Diaz, Alejandro
    Menasalvas, Ernesitina
    Tamez Pena, Jose Gerardo
    Robles, Victor
    2024 IEEE 37TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS 2024, 2024, : 273 - 277