Parameter Estimation for Nonlinearly Parameterized Gray-Box Models

被引:0
|
作者
Goel, Ankit [1 ]
Bernstein, Dennis S. [1 ]
机构
[1] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA
关键词
KALMAN FILTER; STATE; SYSTEMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Many applications involve gray-box models, where the structure of the dynamics as a function of the parameters is known, but the values of the parameters are unknown. Nonlinear estimation algorithms, such as the extended Kalman filter (EKF) and the unscented Kalman filter (UKF), are typically applied to these problems. As an alternative approach, this paper uses retrospective cost model refinement (RCMR), which optimizes a retrospective cost function to update the gain of the estimator. In this paper, we investigate RCMR by estimating a single unknown parameter that may appear nonlinearly in linear and nonlinear systems.
引用
收藏
页码:5280 / 5285
页数:6
相关论文
共 50 条
  • [1] Multi-room occupancy estimation through adaptive gray-box models
    Ebadat, A.
    Bottegal, G.
    Molinari, M.
    Varagnolo, D.
    Wahlberg, B.
    Hjalmarsson, H.
    Johansson, K. H.
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 3705 - 3711
  • [2] Gray-box identification with regularized FIR models
    Muenker, Tobias
    Peter, Timm J.
    Nelles, Oliver
    AT-AUTOMATISIERUNGSTECHNIK, 2018, 66 (09) : 704 - 713
  • [3] Constructing annihilators for parameter estimation in nonlinearly parameterized signals
    Ushirobira, Rosane
    Efimov, Denis
    IFAC PAPERSONLINE, 2023, 56 (02): : 5121 - 5126
  • [4] Parameter estimation and compensation in systems with nonlinearly parameterized perturbations
    Grip, Havard Fjaer
    Johansen, Tor A.
    Imsland, Lars
    Kaasa, Glenn-Ole
    AUTOMATICA, 2010, 46 (01) : 19 - 28
  • [5] Physics-informed online learning of gray-box models by moving horizon estimation
    Lowenstein, Kristoffer Fink
    Bernardini, Daniele
    Fagiano, Lorenzo
    Bemporad, Alberto
    EUROPEAN JOURNAL OF CONTROL, 2023, 74
  • [6] Gray-box inference for structured Gaussian process models
    Galliani, Pietro
    Dezfouli, Amir
    Bonilla, Edwin V.
    Quadrianto, Novi
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 54, 2017, 54 : 353 - 361
  • [7] Gray-Box Models for Performance Assessment of Spark Applications
    Lattuada, Marco
    Gianniti, Eugenio
    Hosseini, Marjan
    Ardagna, Danilo
    Maros, Alexandre
    Murai, Fabricio
    Couto da Silva, Ana Paula
    Almeida, Jussara M.
    CLOSER: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND SERVICES SCIENCE, 2019, : 609 - 618
  • [8] Gray-box continuous-time parameter identification for LPV models with vehicle dynamics applications
    Gaspar, P
    Szabo, Z
    Bokor, J
    2005 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL & 13TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1 AND 2, 2005, : 393 - 398
  • [9] Gray-Box Model Identification and Payload Estimation for Delta Robots
    Falezza, Fabio
    Vesentini, Federico
    Di Flumeri, Alessandro
    Leopardi, Luca
    Fiori, Gianni
    Mistrorigo, Gianfrancesco
    Muradore, Riccardo
    IFAC PAPERSONLINE, 2020, 53 (02): : 8771 - 8776
  • [10] Gray-Box Adversarial Training
    Vivek, B. S.
    Mopuri, Konda Reddy
    Babu, R. Venkatesh
    COMPUTER VISION - ECCV 2018, PT 15, 2018, 11219 : 213 - 228