Ab initio structures of (M2) and (M3) VO2 high pressure phases

被引:32
|
作者
Galy, J [1 ]
Miehe, G
机构
[1] TH Darmstadt, Fachbereich Mat Wissensch, Fachgebiet Strukturforsch, D-64287 Darmstadt, Germany
[2] Univ Tubingen, Inst Anorgan Chem, D-72076 Tubingen, Germany
[3] CNRS, Ctr Elaborat Mat & Etud Struct, F-31055 Toulouse, France
关键词
D O I
10.1016/S1293-2558(00)80096-5
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
(M2) and (M3) VO2 high pressure phases have been obtained at 65kbars by Chamberland. Both phases crystallize in the monoclinic system, (M2) with the space group C2/m and unit cell dimensions a = 9.083 Angstrom, b = 5.763 Angstrom c = 4.532 Angstrom, beta = 90.3 degrees whereas (M3) belongs to P2/m with a = 4.506 Angstrom, b = 2.899 Angstrom, c = 4.617 Angstrom and beta = 91.79 degrees, Based on this data ab initio structures have been elaborated and adjusted to fit their experimental powder patterns. (M2) structure exhibits two crystallographically different infinite parallel [VO4](n)(4n-) strings of VO6 edge shared octahedra interconnected by apices alike in the rutile structure but the oxygens are hexagonally close packed, The (M3) variety shows also two different [VO4](n)(4n-) strings but the general network now is rutile like slightly distorted, Vanadium atoms are situated in distorted oxygen octahedra, the V-O bond lengths ranging from 1.66 Angstrom to 2.15 Angstrom with the V4+-V4+ pairing, V1-V1 = 2.70 Angstrom and V2-V2 = 2.89 Angstrom in (M2). In (M3) the V-O distances range from 1.75 Angstrom to 2.10 Angstrom and V1-V1 = V2-V2 = 2.90 Angstrom. The homopolar V4+ pairs evidenced in the (M2) form and the general unsymmetrical arrangement of oxygen about V4+ are in excellent agreement with the unusual physical properties of these two high pressure varieties.
引用
收藏
页码:433 / 448
页数:16
相关论文
共 50 条
  • [1] High-pressure phases of VO2 from the combination of Raman scattering and ab initio structural search
    Baledent, Victor
    Cerqueira, Tiago T. F.
    Sarmiento-Perez, Rafael
    Shukla, Abhay
    Bellin, Christophe
    Marsi, Marino
    Itie, Jean-Paul
    Gatti, Matteo
    Marques, Miguel A. L.
    Botti, Silvana
    Rueff, Jean-Pascal
    PHYSICAL REVIEW B, 2018, 97 (02)
  • [2] EVERY M3 SPACE IS AN M2 SPACE
    JUNNILA, HJK
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (05): : A501 - A501
  • [3] Electrochemical performance of B and M phases VO2 nanoflowers
    Ni, Juan
    Jiang, Wentao
    Yu, Ke
    Sun, Fang
    Zhu, Ziqiang
    CRYSTAL RESEARCH AND TECHNOLOGY, 2011, 46 (05) : 507 - 510
  • [4] ELECTRICAL PROPERTIES OF PHASES OF LOW-TEMPERATURE M1, T AND M2 IN CHROMIUM AND ALUMINUM DOPED VO2
    VILLENEUVE, G
    DRILLON, M
    LAUNAY, JC
    MARQUESTAUT, E
    HAGENMULLER, P
    SOLID STATE COMMUNICATIONS, 1975, 17 (06) : 657 - 661
  • [5] Sinterability of high-speed steels M2, M3/2 and T15
    Nogueira, RMU
    da Costa, CE
    ADVANCED POWDER TECHNOLOGY IV, 2005, 498-499 : 238 - 243
  • [7] J-104129, a novel muscarinic M3 receptor antagonist with high selectivity for M3 over M2 receptors
    Mitsuya, M
    Mase, T
    Tsuchiya, Y
    Kawakami, K
    Hattori, H
    Kobayashi, K
    Ogino, Y
    Fujikawa, T
    Satoh, A
    Fujikawa, T
    Satoh, A
    Kimura, T
    Noguchi, K
    Ohtake, N
    Tomimoto, K
    BIOORGANIC & MEDICINAL CHEMISTRY, 1999, 7 (11) : 2555 - 2567
  • [8] VO2(B) conversion to VO2(A) and VO2(M) and their oxidation resistance and optical switching properties
    Zhang, Yifu
    MATERIALS SCIENCE-POLAND, 2016, 34 (01): : 169 - 176
  • [9] Synthesis of VO2(A) Nanostructures by a Hydrothermal Method and Their Transition to VO2(M)
    Zhong, Yalan
    Zhang, Yifu
    Liu, Xin
    Liu, Xinghai
    Huang, Chi
    Li, Houbin
    MANUFACTURING SCIENCE AND TECHNOLOGY, PTS 1-3, 2011, 295-297 : 368 - +
  • [10] Direct observation of the M2 phase with its Mott transition in a VO2 film
    Kim, Hoon
    Slusar, Tetiana V.
    Wulferding, Dirk
    Yang, Ilkyu
    Cho, Jin-Cheol
    Lee, Minkyung
    Choi, Hee Cheul
    Jeong, Yoon Hee
    Kim, Hyun-Tak
    Kim, Jeehoon
    APPLIED PHYSICS LETTERS, 2016, 109 (23)