Symmetric discrete universal neural networks

被引:2
|
作者
Goles, E
Matamala, M
机构
[1] Depto. de Ing. Matemática, Universidad de Chile, Fac. de Cie. Fis. y Matemat., Santiago
关键词
D O I
10.1016/S0304-3975(96)00085-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given the class of symmetric discrete weight neural networks with finite state set {0, 1}, we prove that there exist iteration modes under these networks which allow to simulate in linear space arbitrary neural networks (non-necessarily symmetric). As a particular result we prove that an arbitrary symmetric neural network can be simulated by a symmetric one iterated sequentially, with some negative diagonal weights. Further, considering only the synchronous update we prove that symmetric neural networks with one refractory state are able to simulate arbitrary neural networks.
引用
收藏
页码:405 / 416
页数:12
相关论文
共 50 条
  • [1] Neural Universal Discrete Denoiser
    Moon, Taesup
    Min, Seonwoo
    Lee, Byunghan
    Yoon, Sungroh
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [2] Symmetric Simplicial Neural Networks
    Rodriguez, N.
    Julian, P.
    Villemur, M.
    2021 55TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2021,
  • [3] Discrete Morphological Neural Networks
    Marcondes, Diego
    Barrera, Junior
    SIAM JOURNAL ON IMAGING SCIENCES, 2024, 17 (03): : 1650 - 1689
  • [4] Absence of cycles in symmetric neural networks
    Wang, X
    Jagota, A
    Botelho, F
    Garzon, M
    NEURAL COMPUTATION, 1998, 10 (05) : 1235 - 1249
  • [5] Absence of cycles in symmetric neural networks
    Wang, X
    Jagota, A
    Botelho, F
    Garzon, M
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 8: PROCEEDINGS OF THE 1995 CONFERENCE, 1996, 8 : 372 - 378
  • [6] Symmetric quaternionic Hopfield neural networks
    Kobayashi, Masaki
    NEUROCOMPUTING, 2017, 240 : 110 - 114
  • [7] Exponential Separations in Symmetric Neural Networks
    Zweig, Aaron
    Bruna, Joan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [8] Recurrent neural networks are universal approximators
    Schaefer, Anton Maximilian
    Zimmermann, Hans-Georg
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2007, 17 (04) : 253 - 263
  • [9] Recurrent neural networks are universal approximators
    Schaefer, Anton Maximilian
    Zimmermann, Hans Georg
    ARTIFICIAL NEURAL NETWORKS - ICANN 2006, PT 1, 2006, 4131 : 632 - 640
  • [10] Interval Universal Approximation for Neural Networks
    Wang, Zi
    Albarghouthi, A. W. S.
    Prakriya, Gautam
    Jha, Somesh
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2022, 6 (POPL):