A spectral-like decomposition for transitive Anosov flows in dimension three
被引:3
|
作者:
Beguin, F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 13, CNRS, Applicat UMR 7539, Lab Anal,Geometrie, F-93430 Villetaneuse, FranceUniv Paris 13, CNRS, Applicat UMR 7539, Lab Anal,Geometrie, F-93430 Villetaneuse, France
Beguin, F.
[1
]
Bonatti, C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bourgogne, CNRS, UMR 5584, Inst Math Bourgogne, F-21004 Dijon, FranceUniv Paris 13, CNRS, Applicat UMR 7539, Lab Anal,Geometrie, F-93430 Villetaneuse, France
Bonatti, C.
[2
]
Yu, B.
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, Dept Math, Shanghai 200092, Peoples R ChinaUniv Paris 13, CNRS, Applicat UMR 7539, Lab Anal,Geometrie, F-93430 Villetaneuse, France
Yu, B.
[3
]
机构:
[1] Univ Paris 13, CNRS, Applicat UMR 7539, Lab Anal,Geometrie, F-93430 Villetaneuse, France
[2] Univ Bourgogne, CNRS, UMR 5584, Inst Math Bourgogne, F-21004 Dijon, France
[3] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
Given a (transitive or non-transitive) Anosov vector field X on a closed three dimensional manifold M, one may try to decompose (M, X) by cutting M along tori and Klein bottles transverse to X. We prove that one can find a finite collection of pairwise disjoint, pairwise non-parallel tori and Klein bottles transverse to X, such that the maximal invariant sets of the connected components of satisfy the following properties:each is a compact invariant locally maximal transitive set for X; the collection is canonically attached to the pair (M, X) (i.e. it can be defined independently of the collection of tori and Klein bottles ); the 's are the smallest possible: for every (possibly infinite) collection of tori and Klein bottles transverse to X, the 's are contained in the maximal invariant set of .
机构:
Univ Bourgogne, CNRS, Inst Math Bourgogne, UMR 5584, F-21078 Dijon, FranceUniv Bourgogne, CNRS, Inst Math Bourgogne, UMR 5584, F-21078 Dijon, France
Bonatti, Christian
Guelman, Nancy
论文数: 0引用数: 0
h-index: 0
机构:
Univ La Republ, Fac Ingn, IMERL, Montevideo, UruguayUniv Bourgogne, CNRS, Inst Math Bourgogne, UMR 5584, F-21078 Dijon, France