On the group of line crossings on the 2-D torus

被引:0
|
作者
Chou, WS
Shiue, PJS
机构
[1] Acad Sinica, Inst Math, Taipei 11529, Taiwan
[2] Univ Nevada, Dept Math Sci, Las Vegas, NV 89154 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new and simple proof for the cyclic group of line crossings on the 2-D torus.
引用
收藏
页码:29 / 31
页数:3
相关论文
共 50 条
  • [1] PENCIL OF LINES ON THE 2-D TORUS
    FIGUEROA, R
    SALZBERG, PM
    ARS COMBINATORIA, 1994, 37 : 235 - 240
  • [2] Predictive switching in 2-D torus routers
    Yoshinaga, Tsutomu
    Kamakura, Shojiro
    Koibuchi, Michihiro
    INTERNATIONAL WORKSHOP ON INNOVATIVE ARCHITECTURE FOR FUTURE GENERATION HIGH PERFORMANCE PROCESSORS AND SYSTEMS, 2006, : 65 - 72
  • [3] OPTIMAL EMBEDDING OF 2-D TORUS INTO RING
    MA, E
    NARAHARI, B
    TAO, LX
    INFORMATION PROCESSING LETTERS, 1992, 41 (04) : 227 - 231
  • [4] ON THE PATTERN OF CROSSES OF A PEN OF LINES ON THE 2-D TORUS
    SALZBERG, PM
    ARS COMBINATORIA, 1990, 29A : 107 - 108
  • [5] Impact of predictive switching in 2-D torus networks
    Yoshinaga, Tsutomu
    Murakami, Hirokazu
    Koibuchi, Michihiro
    INNOVATIVE ARCHITECTURE FOR FUTURE GENERATION HIGH-PERFORMANCE PROCESSORS AND SYSTEMS, 2007, : 11 - +
  • [6] Designing banded triangular solvers on 2-D torus networks
    Santos, EE
    Santos, ES
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, VOLS I-V, 2000, : 2287 - 2293
  • [7] An Adaptive Routing of the 2-D Torus Network Based on Turn Model
    Miura, Yasuyuki
    Shimozono, Kentaro
    Watanabe, Shigeyoshi
    Matoyama, Kazuya
    2013 FIRST INTERNATIONAL SYMPOSIUM ON COMPUTING AND NETWORKING (CANDAR), 2013, : 587 - 591
  • [8] 2-D CALCULATION OF RESONANCE LINE REABSORPTION
    BRUNNER, W
    JOHN, RW
    INSTITUTE OF PHYSICS CONFERENCE SERIES, 1992, (125): : 287 - 292
  • [9] Retrieving 2-D line drawings by example
    Yaner, PW
    Goel, AK
    DIAGRAMMATIC REPRESENTATION AND INFERENCE, 2002, 2317 : 97 - 99
  • [10] 2-D or not 2-D?
    Rao, SS
    FORBES, 1999, 164 (12): : 234 - 234