Unveiling the plasma wave in the channel of graphene field-effect transistor

被引:0
|
作者
Soltani, A. [1 ]
Kuschewski, F. [2 ]
Bonmann, M. [3 ]
Generalov, A. [4 ]
Vorobiev, A. [3 ]
Ludwig, F. [1 ]
Wiecha, M. [1 ]
Cibiraite, D. [1 ]
Walla, F. [1 ]
Kehr, S. C. [2 ]
Eng, L. M. [2 ]
Stake, J. [3 ]
Roskos, H. G. [1 ]
机构
[1] Goethe Univ, Inst Phys, Frankfurt, Germany
[2] Univ Technol, Inst Appl Phys, Dresden, Germany
[3] Chalmers Univ Technol, Dept Microtechnol & Nanosci, Gothenburg, Sweden
[4] Aalto Univ, Dept Elect & Nanoengn, Tietotie 3, Espoo 02150, Finland
关键词
D O I
10.1109/irmmw-thz.2019.8873874
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Coupling an electromagnetic wave at GHz to THz frequencies into the channel of a graphene field-effect transistor (GFET) provokes collective charge carrier oscillations of the two-dimensional electron gas (2DEG) known as plasma waves. Here, we report the very first experimental and direct mapping of the electric field distribution in a gated GFET at nanometer length scales using scattering-type scanning near-field microscopy (s-SNOM) at 2 THz. Based on the experimental results we deduce the plasma wave velocity for different gate bias voltages, which is in good agreement with the theoretical prediction.
引用
收藏
页数:1
相关论文
共 50 条
  • [1] Direct nanoscopic observation of plasma waves in the channel of a graphene field-effect transistor
    Amin Soltani
    Frederik Kuschewski
    Marlene Bonmann
    Andrey Generalov
    Andrei Vorobiev
    Florian Ludwig
    Matthias M. Wiecha
    Dovilė Čibiraitė
    Frederik Walla
    Stephan Winnerl
    Susanne C. Kehr
    Lukas M. Eng
    Jan Stake
    Hartmut G. Roskos
    Light: Science & Applications, 9
  • [2] Direct nanoscopic observation of plasma waves in the channel of a graphene field-effect transistor
    Soltani, Amin
    Kuschewski, Frederik
    Bonmann, Marlene
    Generalov, Andrey
    Vorobiev, Andrei
    Ludwig, Florian
    Wiecha, Matthias M.
    Cibiraite, Dovile
    Walla, Frederik
    Winnerl, Stephan
    Kehr, Susanne C.
    Eng, Lukas M.
    Stake, Jan
    Roskos, Hartmut G.
    LIGHT-SCIENCE & APPLICATIONS, 2020, 9 (01)
  • [3] RF Performance of Short Channel Graphene Field-Effect Transistor
    Wu, Y. Q.
    Lin, Y. -M.
    Jenkins, K. A.
    Ott, J. A.
    Dimitrakopoulos, C.
    Farmer, D. B.
    Xia, F.
    Grill, A.
    Antoniadis, D. A.
    Avouris, Ph.
    2010 INTERNATIONAL ELECTRON DEVICES MEETING - TECHNICAL DIGEST, 2010,
  • [4] Graphene Junction Field-Effect Transistor
    Ou, Tzu-Min
    Borsa, Tomoko
    Van Zeghbroeck, Bart
    2015 73RD ANNUAL DEVICE RESEARCH CONFERENCE (DRC), 2015, : 139 - 140
  • [5] Graphene Field-Effect Transistor for Biosensor
    Matsumoto, Kazuhiko
    Hayashi, Ryota
    Kanai, Yasushi
    Inoue, Koichi
    Ono, Takao
    2016 23RD INTERNATIONAL WORKSHOP ON ACTIVE-MATRIX FLATPANEL DISPLAYS AND DEVICES (AM-FPD), 2016, : 45 - 46
  • [6] CHANNEL CONDUCTANCE OF ABA STACKING TRILAYER GRAPHENE NANORIBBON FIELD-EFFECT TRANSISTOR
    Sadeghi, Hatef
    Ahmadi, M. T.
    Mousavi, S. M.
    Ismail, Razali
    MODERN PHYSICS LETTERS B, 2012, 26 (08):
  • [7] The Behavioural Model of Graphene Field-effect Transistor
    Luszczek, Maciej
    Turzynski, Marek
    Swisulski, Dariusz
    INTERNATIONAL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2020, 66 (04) : 753 - 758
  • [8] Planar graphene tunnel field-effect transistor
    Katkov, V. L.
    Osipov, V. A.
    APPLIED PHYSICS LETTERS, 2014, 104 (05)
  • [9] Lateral Graphene Heterostructure Field-Effect Transistor
    Moon, Jeong S.
    Seo, Hwa-chang
    Stratan, Fred
    Antcliffe, Mike
    Schmitz, Adele
    Ross, Richard S.
    Kiselev, Andrey A.
    Wheeler, Virginia D.
    Nyakiti, Luke O.
    Gaskill, D. Kurt
    Lee, Kang-Mu
    Asbeck, Peter M.
    IEEE ELECTRON DEVICE LETTERS, 2013, 34 (09) : 1190 - 1192
  • [10] Design and Implementation of ALU Using Graphene Nanoribbon Field-Effect Transistor and Fin Field-Effect Transistor
    Florance, D. Rebecca
    Prabhakar, B.
    Mishra, Manoj Kumar
    JOURNAL OF NANOMATERIALS, 2022, 2022