Antimagic orientation of Halin graphs

被引:10
|
作者
Yu, Xiaowei [1 ]
Chang, Yulin [2 ]
Zhou, Shan [1 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Labeling; Antimagic labeling; Antimagic orientation; Halin graph;
D O I
10.1016/j.disc.2019.06.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An antimagic labeling of a digraph D with n vertices and m arcs is a bijection from the set of arcs of D to {1, 2, ..., m} such that all n oriented vertex sums are pairwise distinct, where an oriented vertex sum of a vertex is the sum of labels of all arcs entering that vertex minus the sum of labels of all arcs leaving it. Hefetz, Mutze and Schwartz conjectured every connected undirected graph admits an antimagic orientation. In this paper, we support this conjecture by proving that every Halin graph admits an antimagic orientation. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:3160 / 3165
页数:6
相关论文
共 50 条
  • [1] Local antimagic orientation of graphs
    Yulin Chang
    Fei Jing
    Guanghui Wang
    Journal of Combinatorial Optimization, 2020, 39 : 1129 - 1152
  • [2] Local antimagic orientation of graphs
    Chang, Yulin
    Jing, Fei
    Wang, Guanghui
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 39 (04) : 1129 - 1152
  • [3] Antimagic orientation of biregular bipartite graphs
    Shan, Songling
    Yu, Xiaowei
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (04):
  • [4] Antimagic orientation of graphs with minimum degree at least 33
    Shan, Songling
    JOURNAL OF GRAPH THEORY, 2021, 98 (04) : 676 - 690
  • [5] ON HALIN GRAPHS
    SYSTO, MM
    PROSKUROWSKI, A
    LECTURE NOTES IN MATHEMATICS, 1983, 1018 : 248 - 256
  • [6] Boxicity of Halin graphs
    Chandran, L. Sunil
    Francis, Mathew C.
    Suresh, Santhosh
    DISCRETE MATHEMATICS, 2009, 309 (10) : 3233 - 3237
  • [7] On graceful antimagic graphs
    Ahmed, Mohammed Ali
    Semanicova-Fenovcikova, Andrea
    Baca, Martin
    Babujee, J. Baskar
    Shobana, Loganathan
    AEQUATIONES MATHEMATICAE, 2023, 97 (01) : 13 - 30
  • [8] Regular graphs are antimagic
    Berczi, Kristof
    Bernath, Attila
    Vizer, Mate
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (03):
  • [9] On graceful antimagic graphs
    Mohammed Ali Ahmed
    Andrea Semaničová-Feňovčíková
    Martin Bača
    J. Baskar Babujee
    Loganathan Shobana
    Aequationes mathematicae, 2023, 97 : 13 - 30
  • [10] On Antimagic Directed Graphs
    Hefetz, Dan
    Muetze, Torsten
    Schwartz, Justus
    JOURNAL OF GRAPH THEORY, 2010, 64 (03) : 219 - 232