A scaling analysis of recovery creep

被引:0
|
作者
Daehn, GS [1 ]
Brehm, H [1 ]
Lim, BS [1 ]
机构
[1] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA
关键词
D O I
暂无
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Here we propose that recovery is a general dislocation-level coarsening process whereby the length scale, lambda, is refined by dislocation generation by plastic deformation and is increased concurrently by coarsening processes. Coarsening relations generally take the form: dlambda(m) = K (.) M(T) (.) dt where, lambda, is a length scale, M(T) is a temperature dependent mobility, K is a free constant, dt is a time increment and m, is the coarsening exponent. Arguments are presented that m(c) should be in the range of 3-4 for dislocation coarsening. This is coupled with standard arguments for modeling plastic deformation. Combining these we can easily justify the form of the empirically derived Dorn creep equation: (gamma)over dot(ss) = C (.) M(T) (.) (tau/mu)(n) where the mobility of the recovering feature, M(T) should typically scale with self-diffusivity and the value of the steady state creep exponent, n is m(c)+2 (.) (1-c) where c is a constant related to dislocation generation that should be in the range of 0 to 0.5. Hence this approach predicts creep as being controlled by self-diffusion and that the steady-state stress exponent should be on the order of 4-6. One can also use this approach to make rough predictions of absolute creep rates in simple materials.
引用
收藏
页码:371 / 382
页数:12
相关论文
共 50 条
  • [1] UPWARD CREEP OF A WETTING FLUID - A SCALING ANALYSIS
    JOANNY, JF
    DEGENNES, PG
    JOURNAL DE PHYSIQUE, 1986, 47 (01): : 121 - 127
  • [3] Creep and recovery
    Pelleg J.
    Pelleg, Joshua (pelleg@bgumail.bgu.ac.il), 1600, Springer Verlag (241): : 153 - 165
  • [4] ELASTIC STRAIN, CREEP, AND RECOVERY IN MORTARS - ADDITIONAL ANALYSIS
    TAVES, LBS
    JOURNAL OF TESTING AND EVALUATION, 1995, 23 (05) : 377 - 383
  • [5] Creep and recovery behavior analysis of space mesh structures
    Tang, Yaqiong
    Li, Tuanjie
    Ma, Xiaofei
    ACTA ASTRONAUTICA, 2016, 128 : 455 - 463
  • [6] Fluctuations and Scaling in Creep Deformation
    Rosti, Jari
    Koivisto, Juha
    Laurson, Lasse
    Alava, Mikko J.
    PHYSICAL REVIEW LETTERS, 2010, 105 (10)
  • [7] SCALING LAWS IN DISLOCATION CREEP
    STONE, DS
    ACTA METALLURGICA ET MATERIALIA, 1991, 39 (04): : 599 - 608
  • [8] Universal scaling in transient creep
    Dysthe, DK
    Podladchikov, Y
    Renard, F
    Feder, J
    Jamtveit, B
    PHYSICAL REVIEW LETTERS, 2002, 89 (24)
  • [9] Scaling analysis of magnetization curves based on collective flux creep for YBCO
    Ribeiro, RA
    de Lima, OF
    PHYSICA C, 2001, 354 (1-4): : 227 - 231
  • [10] THE RECOVERY IS OFF - TO A CREEP
    BALL, R
    FORTUNE, 1983, 108 (10) : 203 - 203