AE-GAN: Attention Embedded GAN for Irregular and Large-Area Mask Face Image Inpainting

被引:0
|
作者
Bao, Yongtang [1 ]
Xiao, Xinfei [1 ]
Qi, Yue [2 ,3 ,4 ]
机构
[1] Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao 266590, Peoples R China
[2] Beihang Univ, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China
[3] Beihang Univ, Virtual Real Res Inst, Qingdao Res Inst, Qingdao 266100, Peoples R China
[4] Peng Cheng Lab, Shenzhen 518055, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Face inpainting; Attention mechanism; Adversarial generative network model;
D O I
10.1007/978-3-031-23473-6_26
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Existing image inpainting methods have shown promising results for regular and small-area breaks. However, restoration of irregular and large-area damage is still tricky and achieves mediocre results due to the lack of restrictions on the center of the hole. In contrast, face inpainting is also problematic due to facial structure and texture complexity, which always results in structural confusion and texture blurring. We propose an attention embedded adversarial generative network (AE-GAN) in the paper to solve this problem. Overall our framework is a U-shape GAN model. To enable the network to capture the practical features faster to reconstruct the content of the masked region in the face image, we also embed the attention mechanism that simplifies the Squeeze-and-Excitation channel attention mechanism and then set it reasonably in our generator. Our generator is chosen the U-net structure as a backbone. Because the structure can encode information from low-level pixels context features to high-level semantic features. And it can decode the features back into an image. Experiments on CelebA-HQ datasets demonstrate that our proposed method generates higher quality inpainting, results in consistent and harmonious facial structures and appearance than existing methods, and achieves state-of-the-art performance.
引用
收藏
页码:330 / 341
页数:12
相关论文
共 50 条
  • [1] Image Inpainting Based on Contextual Coherent Attention GAN
    Li, Hong-an
    Hu, Liuqing
    Hua, Qiaozhi
    Yang, Meng
    Li, Xinpeng
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2022, 31 (12)
  • [2] Bulk large-area GaN layers
    Zhilyaev, YV
    Nasonov, AV
    Raevskii, SD
    Rodin, SN
    Shcheglov, MP
    Yusupova, SA
    Davydov, VY
    TECHNICAL PHYSICS LETTERS, 2003, 29 (05) : 400 - 403
  • [3] Large-area crystalline GaN slabs
    M. G. Mynbaeva
    A. I. Pechnikov
    A. A. Sitnikova
    D. A. Kirilenko
    A. A. Lavrent’ev
    E. V. Ivanova
    V. I. Nikolaev
    Technical Physics Letters, 2015, 41 : 246 - 248
  • [4] Bulk large-area GaN layers
    Yu. V. Zhilyaev
    A. V. Nasonov
    S. D. Raevskii
    S. N. Rodin
    M. P. Shcheglov
    Sh. A. Yusupova
    V. Yu. Davydov
    Technical Physics Letters, 2003, 29 : 400 - 403
  • [5] Large-area crystalline GaN slabs
    Mynbaeva, M. G.
    Pechnikov, A. I.
    Sitnikova, A. A.
    Kirilenko, D. A.
    Lavrent'ev, A. A.
    Ivanova, E. V.
    Nikolaev, V. I.
    TECHNICAL PHYSICS LETTERS, 2015, 41 (03) : 246 - 248
  • [6] Large Mask Image Completion with Conditional GAN
    Shao, Changcheng
    Li, Xiaolin
    Li, Fang
    Zhou, Yifan
    SYMMETRY-BASEL, 2022, 14 (10):
  • [7] SAC-GAN: Face Image Inpainting with Spatial-Aware Attribute Controllable GAN
    Cha, Dongmin
    Kim, Taehun
    Lee, Joonyeong
    Kim, Dajin
    COMPUTER VISION - ACCV 2022, PT VII, 2023, 13847 : 202 - 218
  • [8] Large-area suspended graphene on GaN nanopillars
    Lee, Chongmin
    Kim, Byung-Jae
    Ren, Fan
    Pearton, S. J.
    Kim, Jihyun
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2011, 29 (06):
  • [9] GAN-based face identity feature recovery for image inpainting
    Wang, Yan
    Shin, Jitae
    2022 37TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2022), 2022, : 930 - 932
  • [10] DE-GAN: Domain Emb e dde d GAN for High Quality Face Image Inpainting
    Zhang, Xian
    Wang, Xin
    Shi, Canghong
    Yan, Zhe
    Li, Xiaojie
    Kong, Bin
    Lyu, Siwei
    Zhu, Bin
    Lv, Jiancheng
    Yin, Youbing
    Song, Qi
    Wu, Xi
    Mumtaz, Imran
    PATTERN RECOGNITION, 2022, 124