Climate change;
distributed lag non‐
linear model;
Empoasca onukii;
insect pests;
leafhopper;
tea (Camelia sinensis);
GLOBAL CLIMATE-CHANGE;
HEMIPTERA CICADELLIDAE;
CAMELLIA-SINENSIS;
EMPOASCA-VITIS;
DROUGHT STRESS;
TEA;
DYNAMICS;
PLANTATIONS;
VARIABILITY;
POPULATIONS;
D O I:
10.1111/een.13023
中图分类号:
Q96 [昆虫学];
学科分类号:
摘要:
Multivariate climate change is expected to impact insect densities and plant growth in complex, and potentially different, ways. Tea (Camellia sinensis) is a unique crop system where the increase in quality from chemical defences induced by Empoasca onukii (Homoptera: Cicadellidae) feeding can outweigh reductions in yield and make attack by this leafhopper desirable to tea farmers. Differential impacts of weather attributes on tea and herbivores could impact feasibility of this unique farming strategy in a rapidly changing climate. We monitored leafhopper densities and tea shoot growth at a tea farm in Fujian Province, China for 2 months (June and July). We used distributed lag non-linear models to capture potentially delayed and non-linear effects of weather attributes on tea growth and leafhopper densities. Weather attributes had contrasting effects on leafhopper density and tea shoot growth. Leafhopper densities were highest with low daily mean and maximum temperatures, while warm temperatures favoured tea growth. Effects of temperature on leafhoppers were delayed, while effects on tea growth were immediate. Precipitation reduced tea growth, and had a delayed positive effect on leafhopper density. The delayed effects of weather attributes on leafhoppers indicate that earlier, less conspicuous life stages (i.e. eggs and early instar nymphs) may be susceptible to desiccation. Although increasing annual mean temperature is commonly predicted to benefit multivoltine insect pests, our results show that cool, wet conditions benefit E. onukii during summer months when they are most abundant. These results have implications for tea green leafhopper management strategies.
机构:
Xi An Jiao Tong Univ, Sch Human Settlements & Civil Engn, Dept Earth & Environm Sci, Xian 710049, Peoples R China
Chinese Acad Sci, Inst Earth Environm, State Key Lab Loess & Quaternary Geol, Xian 710075, Peoples R ChinaXi An Jiao Tong Univ, Sch Human Settlements & Civil Engn, Dept Earth & Environm Sci, Xian 710049, Peoples R China
Sun, Changfeng
Ma, Yongyong
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Earth Environm, State Key Lab Loess & Quaternary Geol, Xian 710075, Peoples R ChinaXi An Jiao Tong Univ, Sch Human Settlements & Civil Engn, Dept Earth & Environm Sci, Xian 710049, Peoples R China
机构:
Univ Strasbourg, CNRS, Inst Phys & Chim Mat Strasbourg, UMR 7504, 23 Rue Loess, F-67000 Strasbourg, France
Univ Groningen, Stratingh Inst Chem, Nijenborgh 4, NL-9747 AG Groningen, NetherlandsUniv Strasbourg, CNRS, Inst Phys & Chim Mat Strasbourg, UMR 7504, 23 Rue Loess, F-67000 Strasbourg, France