The increase of the computing power of computer systems results in the need of an intense cooling of processors, where relatively large amounts of heat energy are released. One of the ways to intensify the heat exchange is the use of phase transitions of the boiling and condensation of refrigerants in the left-run thermodynamic cycle. Considering the small dimensions of electronic elements, there is a requirement to miniaturize the cooling system, where the diameters of the tubular channels are below 3 min. The present study includes an analysis of the processes of boiling and condensation of environment-friendly refrigerants in tubular mini-channels. Attention was paid to the specificity of these processes, which occur in channels with small and very small diameters in comparison with conventional channels. Dependences were proposed in order to determine the drop of the pressure and the heat transfer coefficient. The results of the research conducted by the author of the study and by other authors were used. Issues presented in this paper have the essential meaning because of following: 1. computatiotial dependences defined and tested for conventional channels call not be uncritically transferred to the range of mini- and micro-channels, 2. in spite of the fact, that the phase conversions of boiling and condensation refrigerants are, in relation to themselves, opposite processes, this does not mean their symmetricalness. That is why correlations proposed for calculations should be separately experimentally verified for those phase conversions, 3. designers of so-called compact heat exchangers in which tubular milli-channels are applied expect verified calculational correlations, necessary for determination of heat exchange surface, 4. introduction of new, en vironment-friendly substitutes of halogen refrigerants (freons - already withdrawn) creates additional problems in this range. Issues presented in this paper concern analysis of usefulness of proposed correlations to calculation of flow resistance and heat transfer coefficient in cooling tubular milli-channels, compact condensers and evaporators, Individual tubular mini-channels were analysed, excluding arrangements composed of many mini-channels parallelly fed. Executed comparative calculations with application of proposed correlations and the results of many authors experimental investigations do not let currently choose unambiguously, which formula and in which ranges will give the best results. Authors claim that further theoretical and experimental investigations should allow to find standard computational dependences. This means that also designers of compact cooling mini-exchangers (including new environment-friendly reftigerants) wait for the solution of this problem.