GLUCOSE-DEPENDENT INSULINOTROPIC POLYPEPTIDE (GASTRIC INHIBITORY POLYPEPTIDE; GIP)

被引:139
|
作者
McIntosh, Christopher H. S. [1 ]
Widenmaier, Scott [1 ]
Kim, Su-Jin [1 ]
机构
[1] Univ British Columbia, Inst Life Sci, Diabet Res Grp, Dept Cellular & Physiol Sci, Vancouver, BC V6T 1Z3, Canada
来源
基金
加拿大健康研究院;
关键词
GLUCAGON-LIKE PEPTIDE-1; PANCREATIC BETA-CELLS; II DIABETIC-PATIENTS; PERFUSED RAT PANCREAS; ENDOPLASMIC-RETICULUM STRESS; LIPOPROTEIN-LIPASE ACTIVITY; PROTEIN-COUPLED RECEPTORS; HYPERGLYCEMIC OB/OB MICE; HEALTHY CONTROL SUBJECTS; AMINO-ACID-SEQUENCE;
D O I
10.1016/S0083-6729(08)00615-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Glucose-dependent insulinotropic polypeptide (GIP; gastric inhibitory polypeptide) is a 42 amino acid hormone that is produced by enteroendocrine K-cells and released into the circulation in response to nutrient stimulation. Both GIP and glucagon-like peptide-1 (GLP-1) stimulate insulin secretion in a glucose-dependent manner and are thus classified as incretins. The structure of mammalian GIP is well conserved and both the N-terminus and central region of the molecule are important for biological activity. Following secretion, GIP is metabolized by the endoprotease dipeptidyl peptidase IV (DPP-IV). In addition to its insulinotropic activity, GIP exerts a number of additional actions including promotion of growth and survival of the pancreatic beta-cell and stimulation of adipogenesis. The brain, bone, cardiovascular system, and gastrointestinal tract are additional targets of GIP. The GIP receptor is a member of the B-family of G protein-coupled receptors and activation results in the stimulation of adenylyl cyclase and Ca2+-independent phospholipase A(2) and activation of protein kinase (PK) A and PKB. The Mek1/2-Erk1/2 and P38 MAP kinase signaling pathways are among the downstream pathways involved in the regulation of beta-cell function. GIP also increases expression of the anti-apoptotic Bcl-2 and decreases expression of the pro-apoptotic Bax, resulting in reduced beta-cell death. In adipose tissue, GIP interacts with insulin to increase lipoprotein lipase activity and lipogenesis. There is significant interest in potential clinical applications for GIP analogs and both agonists and antagonists have been developed for preclinical studies. (C) 2009 Elsevier Inc.
引用
收藏
页码:409 / 471
页数:63
相关论文
共 50 条
  • [1] Glucose-dependent insulinotropic polypeptide/gastric inhibitory polypeptide
    Meier, JJ
    Nauck, MA
    BEST PRACTICE & RESEARCH CLINICAL ENDOCRINOLOGY & METABOLISM, 2004, 18 (04) : 587 - 606
  • [2] Glucose-dependent insulinotropic polypeptide (GIP)
    Mueller, Timo D.
    Adriaenssens, Alice
    Ahren, Bo
    Blueher, Matthias
    Birkenfeld, Andreas L.
    Campbell, Jonathan E.
    Coghlan, Matthew P.
    D'Alessio, David
    Deacon, Carolyn F.
    Delprato, Stefano
    Douros, Jonathan D.
    Drucker, Daniel J.
    Burgos, Natalie S. Figueredo
    Flatt, Peter R.
    Finan, Brian
    Gimeno, Ruth E.
    Gribble, Fiona M.
    Hayes, Matthew R.
    Hoelscher, Christian
    Holst, Jens J.
    Knerr, Patrick J.
    Knop, Filip K.
    Kusminski, Christine M.
    Liskiewicz, Arkadiusz
    Mabilleau, Guillaume
    Mowery, Stephanie A.
    Nauck, Michael A.
    Novikoff, Aaron
    Reimann, Frank
    Roberts, Anna G.
    Rosenkilde, Mette M.
    Samms, Ricardo J.
    Scherer, Philip E.
    Seeley, Randy J.
    Sloop, Kyle W.
    Wolfrum, Christian
    Wootten, Denise
    Dimarchi, Richard D.
    Tschoep, Matthias H.
    MOLECULAR METABOLISM, 2025, 95
  • [3] Gastric inhibitory polypeptide/glucose-dependent insulinotropic polypeptide (GIP) acts on osteoblasts to increase bone mass
    Yamada, C
    Yamada, Y
    Tsukiyama, K
    Harada, N
    Fujiwara, H
    Miyawaki, K
    Tanaka, K
    Amizuka, N
    Inagaki, N
    Seino, Y
    DIABETES, 2005, 54 : A364 - A365
  • [4] Gastric inhibitory polypeptide/glucose-dependent insulinotropic polypeptide signaling in adipose tissue
    Yamane, Shunsuke
    Harada, Norio
    JOURNAL OF DIABETES INVESTIGATION, 2019, 10 (01) : 3 - 5
  • [5] Glucose-dependent insulinotropic polypeptide (GIP) and cardiovascular disease
    Heimburger, Sebastian M.
    Bergmann, Natasha C.
    Augustin, Robert
    Gasbjerg, Laerke S.
    Christensen, Mikkel B.
    Knop, Filip K.
    PEPTIDES, 2020, 125
  • [6] Increased glucose-dependent insulinotropic polypeptide (GIP) secretion in acromegaly
    Peracchi, M
    Porretti, S
    Gebbia, C
    Pagliari, C
    Bucciarelli, P
    Epaminonda, P
    Manenti, S
    Arosio, M
    EUROPEAN JOURNAL OF ENDOCRINOLOGY, 2001, 145 (01) : R1 - R4
  • [7] Characterization of glucose-dependent insulinotropic polypeptide (GIP) signaling in adipocytes
    Song, D
    Getty-Kaushik, L
    Tseng, E
    Simon, J
    Corkey, B
    Wolfe, M
    OBESITY RESEARCH, 2005, 13 : A31 - A31
  • [8] A RADIOIMMUNOASSAY (RIA) FOR HUMAN GLUCOSE-DEPENDENT INSULINOTROPIC POLYPEPTIDE (GIP)
    SAITO, T
    SCHWARTZ, K
    CLINICAL CHEMISTRY, 1987, 33 (06) : 893 - 893
  • [9] THE PHARMACOKINETICS OF PORCINE GLUCOSE-DEPENDENT INSULINOTROPIC POLYPEPTIDE (GIP) IN MAN
    SARSON, DL
    HAYTER, RC
    BLOOM, SR
    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 1982, 12 (06) : 457 - 461
  • [10] Evolution of the vertebrate glucose-dependent insulinotropic polypeptide (GIP) gene
    Irwin, David M.
    Zhang, Tony
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS, 2006, 1 (04): : 385 - 395