MINIMAL ENERGY POINT SYSTEMS ON THE UNIT CIRCLE AND THE REAL LINE

被引:1
|
作者
Gaal, Marcell [1 ]
Nagy, Bela [2 ]
Nagy-Csiha, Zsuzsanna [3 ,4 ]
Revesz, Szilard Gy [1 ]
机构
[1] Alfred Renyi Inst Math, H-1053 Budapest, Hungary
[2] Univ Szeged, MTA SZTE Anal & Stochast Res Grp, H-6720 Szeged, Hungary
[3] Univ Pecs, Inst Math & Informat, Pecs, Hungary
[4] Eotvos Lorand Univ, Dept Numer Anal, H-1117 Budapest, Hungary
关键词
Blaschke product; electrostatic equilibrium; potential theory; external fields; ELECTROSTATIC INTERPRETATION; ZEROS; POLYNOMIALS; INTERPOLATION; STIELTJES; MODEL;
D O I
10.1137/19M1302971
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate discrete logarithmic energy problems in the unit circle. We study the equilibrium configuration of n electrons and n - 1 pairs of external protons of charge +1/2. It is shown that all the critical points of the discrete logarithmic energy are global minima, and they are the solutions of certain equations involving Blaschke products. As a nontrivial application, we refine a recent result of Simanek; namely, we prove that any configuration of n electrons in the unit circle is in stable equilibrium (that is, they are not just critical points but are of minimal energy) with respect to an external field generated by n - 1 pairs of protons.
引用
收藏
页码:6281 / 6296
页数:16
相关论文
共 50 条