Preparation and Testing of Cells Expressing Fluorescent Proteins for Intravital Imaging of Tumor Microenvironment

被引:5
|
作者
Vodopyanov, S. S. [1 ]
Kunin, M. A. [2 ]
Garanina, A. S. [1 ]
Grinenko, N. F. [3 ]
Vlasova, K. Yu. [2 ]
Mel'nikov, P. A. [3 ]
Chekhonin, V. P. [3 ,4 ]
Sukhinich, K. K. [5 ]
Makarov, A. V. [3 ]
Naumenko, V. A. [1 ]
Abakumov, M. A. [1 ,4 ]
Majouga, A. G. [1 ,2 ,6 ]
机构
[1] Natl Univ Sci & Technol MISIS, Lab Biomed Nanomat, Moscow, Russia
[2] Moscow MV Lomonosov State Univ, Moscow, Russia
[3] Minist Hlth Russian Federat, VP Serbsky Fed Med Res Ctr Psychiat & Narcol, Moscow, Russia
[4] NI Pirogov Russian Natl Res Med Univ, Minist Hlth Russian Federat, Moscow, Russia
[5] Russian Acad Sci, NK Koltsov Inst Dev Biol, Moscow, Russia
[6] DI Mendeleev Univ Chem Technol, Moscow, Russia
关键词
fluorescent cell lines; transduction; tumor uptake; intravital microscopy; OXIDATIVE STRESS; IMMUNOGENICITY; EGFP;
D O I
10.1007/s10517-019-04475-3
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Intravital microscopy is widely used for in vivo studies of the mechanisms of carcinogenesis and response to antitumor therapy. For visualization of tumor cells in vivo, cell lines expressing fluorescent proteins are needed. Expression of exogenous proteins can affect cell growth rate and their tumorigenic potential. Therefore, comprehensive analysis of the morphofunctional properties of transduced cells is required for creating appropriate models of tumor microenvironment. In the present study, six lines of mouse tumor cells expressing green and red fluorescent proteins were derived. Analysis of cells morphology, growth kinetics, and response to chemotherapy in vitro revealed no significant differences between wild-type and transduced cell lines. Introduction of fluorescent proteins into the genome of 4T1 (murine breast cancer) and B16-F10 (murine melanoma) cells did not affect tumor growth rate after subcutaneous implantation to mice, while both CT26-GFP and CT26-RFP cells (murine colon cancer) were rejected starting from day 8 after implantation. Elucidation of the mechanisms underlying CT26-GFP/RFP rejection is required to modify transduction technique for creating the models of tumor microenvironment accessible for in vivo visualization. Transduced 4T1 and B16-F10 cell lines can be used for intravital microscopic imaging of tumor cells, neoplastic vasculature, and leukocyte subpopulations.
引用
收藏
页码:123 / 130
页数:8
相关论文
共 50 条
  • [1] Preparation and Testing of Cells Expressing Fluorescent Proteins for Intravital Imaging of Tumor Microenvironment
    S. S. Vodopyanov
    M. A. Kunin
    A. S. Garanina
    N. F. Grinenko
    K. Yu. Vlasova
    P. A. Mel’nikov
    V. P. Chekhonin
    K. K. Sukhinich
    A. V. Makarov
    V. A. Naumenko
    M. A. Abakumov
    A. G. Majouga
    Bulletin of Experimental Biology and Medicine, 2019, 167 : 123 - 130
  • [2] Intravital Microscopy for Imaging Subcellular Structures in Live Mice Expressing Fluorescent Proteins
    Masedunskas, Andrius
    Porat-Shliom, Natalie
    Tora, Muhibullah
    Milberg, Oleg
    Weigert, Roberto
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2013, (79):
  • [3] Intravital imaging of the functions of immune cells in the tumor microenvironment during immunotherapy
    Peng, Xuwen
    Wang, Yuke
    Zhang, Jie
    Zhang, Zhihong
    Qi, Shuhong
    FRONTIERS IN IMMUNOLOGY, 2023, 14
  • [4] Intravital imaging of anti-tumor immune response and the tumor microenvironment
    Zal, Tomasz
    Chodaczek, Grzegorz
    SEMINARS IN IMMUNOPATHOLOGY, 2010, 32 (03) : 305 - 317
  • [5] Intravital imaging of anti-tumor immune response and the tumor microenvironment
    Tomasz Zal
    Grzegorz Chodaczek
    Seminars in Immunopathology, 2010, 32 : 305 - 317
  • [6] Intravital imaging of immunity using fluorescent proteins and light microscopy
    Loran, M
    FASEB JOURNAL, 2005, 19 (04): : A217 - A217
  • [7] Imaging tumor angiogenesis with fluorescent proteins
    Hoffman, RM
    APMIS, 2004, 112 (7-8) : 441 - 449
  • [8] Studying the effect of radiation on vascular function and tumor microenvironment using intravital imaging
    Maeda, A.
    Bu, J.
    Chen, E.
    DaCosta, R. S.
    RADIOTHERAPY AND ONCOLOGY, 2014, 111 : S171 - S171
  • [9] A Label-Free Segmentation Approach for Intravital Imaging of Mammary Tumor Microenvironment
    Burkel, Brian M.
    Inman, David R.
    Virumbrales-Munoz, Maria
    Hoffmann, Erica J.
    Ponik, Suzanne M.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2022, (183):
  • [10] A single promoter system co-expressing RNA sensor with fluorescent proteins for quantitative mRNA imaging in living tumor cells
    Ying, Zhan-Ming
    Yuan, Yue-Yan
    Tu, Bin
    Tang, Li-Juan
    Yu, Ru-Qin
    Jiang, Jian-Hui
    CHEMICAL SCIENCE, 2019, 10 (18) : 4828 - 4833