APPROXIMATE MARGINALIZATION OF UNKNOWN SCATTERING IN QUANTITATIVE PHOTOACOUSTIC TOMOGRAPHY

被引:16
|
作者
Pulkkinen, Aki [1 ]
Kolehmainen, Ville [1 ]
Kaipio, Jari P. [1 ,2 ]
Cox, Benjamin T. [3 ]
Arridge, Simon R. [4 ]
Tarvainen, Tanja [1 ,4 ]
机构
[1] Univ Eastern Finland, Dept Appl Phys, Kuopio 70211, Finland
[2] Univ Auckland, Auckland Mail Ctr, Dept Math, Auckland 1142, New Zealand
[3] UCL, Dept Med Phys & Bioengn, London WC1E 6BT, England
[4] UCL, Dept Comp Sci, London WC1E 6BT, England
基金
芬兰科学院;
关键词
Inverse problems; parameter estimation; quantitative photoacoustic tomography; approximation error; uncertainty quantification; numerical methods; OPTICAL-ABSORPTION COEFFICIENT; NEAR-INFRARED SPECTROSCOPY; MEAN RADON-TRANSFORM; MODEL-REDUCTION; THERMOACOUSTIC TOMOGRAPHY; IMAGE-RECONSTRUCTION; INVERSE PROBLEMS; VALUE OPERATOR; DISTRIBUTIONS; SIMULATIONS;
D O I
10.3934/ipi.2014.8.811
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Quantitative photoacoustic tomography is a hybrid imaging method, combining near-infrared optical and ultrasonic imaging. One of the interests of the method is the reconstruction of the optical absorption coefficient within the target. The measurement depends also on the uninteresting but often unknown optical scattering coefficient. In this work, we apply the approximation error method for handling uncertainty related to the unknown scattering and reconstruct the absorption only. This way the number of unknown parameters can be reduced in the inverse problem in comparison to the case of estimating all the unknown parameters. The approximation error approach is evaluated with data simulated using the diffusion approximation and Monte Carlo method. Estimates are inspected in four two-dimensional cases with biologically relevant parameter values. Estimates obtained with the approximation error approach are compared to estimates where both the absorption and scattering coefficient are reconstructed, as well to estimates where the absorption is reconstructed, but the scattering is assumed (incorrect) fixed value. The approximation error approach is found to give better estimates for absorption in comparison to estimates with the conventional measurement error model using fixed scattering. When the true scattering contains stronger variations, improvement of the approximation error method over fixed scattering assumption is more significant.
引用
收藏
页码:811 / 829
页数:19
相关论文
共 50 条
  • [1] Reconstructing absorption and scattering distributions in quantitative photoacoustic tomography
    Tarvainen, T.
    Cox, B. T.
    Kaipio, J. P.
    Arridge, S. R.
    INVERSE PROBLEMS, 2012, 28 (08)
  • [2] Quantitative Photoacoustic Tomography
    Gao, Hao
    Osher, Stanley
    Zhao, Hongkai
    MATHEMATICAL MODELING IN BIOMEDICAL IMAGING II: OPTICAL, ULTRASOUND, AND OPTO-ACOUSTIC TOMOGRAPHIES, 2012, 2035 : 131 - 158
  • [3] Quantitative photoacoustic tomography
    Yuan, Zhen
    Jiang, Huabei
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1900): : 3043 - 3054
  • [4] Quantitative Fluorescence Photoacoustic Tomography
    Ren, Kui
    Zhao, Hongkai
    SIAM JOURNAL ON IMAGING SCIENCES, 2013, 6 (04): : 2404 - 2429
  • [5] Simultaneous reconstruction of absorption, scattering and anisotropy factor distributions in quantitative photoacoustic tomography
    Asllanaj, Fatmir
    Addoum, Ahmad
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2020, 6 (04)
  • [6] Fiber endface photoacoustic generator for quantitative photoacoustic tomography
    Yang, Guang
    Huan, Hengbo
    Luo, Hongbo
    Kou, Sitai
    Amidi, Eghbal
    Achilefu, Samuel
    Zhu, Quing
    OPTICS LETTERS, 2021, 46 (11) : 2706 - 2709
  • [7] Application of diffusion approximation in quantitative photoacoustic tomography in the presence of low-scattering regions
    Hanninen, Niko
    Pulkkinen, Aki
    Leino, Aleksi
    Tarvainen, Tanja
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2020, 250 (250):
  • [8] Stability for quantitative photoacoustic tomography revisited
    Eric Bonnetier
    Mourad Choulli
    Faouzi Triki
    Research in the Mathematical Sciences, 2022, 9
  • [9] Stability for quantitative photoacoustic tomography revisited
    Bonnetier, Eric
    Choulli, Mourad
    Triki, Faouzi
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2022, 9 (02)
  • [10] ESTIMATING ABSORPTION AND SCATTERING IN QUANTITATIVE PHOTOACOUSTIC TOMOGRAPHY WITH AN ADAPTIVE MONTE CARLO METHOD FOR LIGHT TRANSPORT
    Hanninen, Niko
    Pulkkinen, Aki
    Arridge, Simon
    Tarvainen, Tanja
    INVERSE PROBLEMS AND IMAGING, 2024, 18 (05) : 1052 - 1077