On the accuracy of the 3-body fragment molecular orbital method (FMO) applied to density functional theory

被引:111
|
作者
Fedorov, DG [1 ]
Kitaura, K [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol AIST, RICS, Tsukuba, Ibaraki 3058568, Japan
关键词
D O I
10.1016/j.cplett.2004.03.072
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The 3-body fragment molecular orbital method (FMO) was combined with density functional theory (DFT). The accuracy of the new method was tested on water clusters and alanine n-mers (alpha-helices and beta-strands), using B3LYP and the 6-31G* basis set (and 6-31++G** for water clusters). At the best level (3-body, two molecules (residues) per fragment), absolute errors in energy were at most 0.0088 a.u., absolute errors in RMS energy gradients were at most 0.00020 a.u./bohr, and relative errors in RMS dipole moments were at most 6.1 (0.56)%, where the value in parentheses is restricted to the 6-31G* basis set. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:129 / 134
页数:6
相关论文
共 50 条
  • [1] Accuracy of Dimer-ES Approximation on Fragment Molecular Orbital (FMO) Method
    Nakano, Tatsuya
    Fukuzawa, Kaori
    Okiyama, Yoshio
    Watanabe, Chiduru
    Komeiji, Yuto
    Mochizuki, Yuji
    CHEM-BIO INFORMATICS JOURNAL, 2018, 18 : 119 - 122
  • [2] Accuracy of the three-body fragment molecular orbital method applied to Moller-Plesset perturbation theory
    Fedorov, Dmitri G.
    Ishimura, Kazuya
    Ishida, Toyokazu
    Kitaura, Kazuo
    Pulay, Peter
    Nagase, Shigeru
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2007, 28 (09) : 1476 - 1484
  • [3] Fragment molecular orbital method with density functional theory and DIIS convergence acceleration
    Sugiki, SI
    Kurita, N
    Sengoku, Y
    Sekino, H
    CHEMICAL PHYSICS LETTERS, 2003, 382 (5-6) : 611 - 617
  • [4] Analytic Gradient for Density Functional Theory Based on the Fragment Molecular Orbital Method
    Brorsen, Kurt R.
    Zahariev, Federico
    Nakata, Hiroya
    Fedorov, Dmitri G.
    Gordon, Mark S.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (12) : 5297 - 5307
  • [5] Multilayer formulation of the fragment molecular orbital method (FMO)
    Fedorov, DG
    Ishida, T
    Kitaura, K
    JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (11): : 2638 - 2646
  • [6] Time-dependent density functional theory with the multilayer fragment molecular orbital method
    Chiba, Mahito
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    CHEMICAL PHYSICS LETTERS, 2007, 444 (4-6) : 346 - 350
  • [7] Analytic second derivative of the energy for density functional theory based on the three-body fragment molecular orbital method
    Nakata, Hiroya
    Fedorov, Dmitri G.
    Zahariev, Federico
    Schmidt, Michael W.
    Kitaura, Kazuo
    Gordon, Mark S.
    Nakamura, Shinichiro
    JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (12):
  • [8] Development of the four-body corrected fragment molecular orbital (FMO4) method
    Nakano, Tatsuya
    Mochizuki, Yuji
    Yamashita, Katsumi
    Watanabe, Chiduru
    Fukuzawa, Kaori
    Segawa, Katsunori
    Okiyama, Yoshio
    Tsukamoto, Takayuki
    Tanaka, Shigenori
    CHEMICAL PHYSICS LETTERS, 2012, 523 : 128 - 133
  • [9] Accuracy of the fragment molecular orbital (FMO) calculations for DNA: Total energy, molecular orbital, and inter-fragment interaction energy
    Fukuzawa, Kaori
    Watanabe, Chiduru
    Kurisaki, Ikuo
    Taguchi, Naoki
    Mochizuki, Yuji
    Nakano, Tatsuya
    Tanaka, Shigenori
    Komeiji, Yuto
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2014, 1034 : 7 - 16
  • [10] Time-dependent density functional theory based upon the fragment molecular orbital method
    Chiba, Mahito
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (10):