Coherent state realizations of su(n+1) on the n-torus

被引:8
|
作者
de Guise, H [1 ]
Bertola, M
机构
[1] Lakehead Univ, Dept Phys, Thunder Bay, ON P7B 5E1, Canada
[2] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
关键词
D O I
10.1063/1.1479301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We obtain a new family of coherent state representations of SU(n+1), in which the coherent states are Wigner functions over a subgroup of SU(n+1). For representations of SU(n+1) of the type (lambda, 0, 0,...), the basis functions are simple products of n exponential. The corresponding coherent state representations of the algebra su(n+1) are also obtained, and provide a polar decomposition of su(n+1) for any n+1. The su(n+1) modules thus obtained are useful in understanding contractions of su(n+1) and su(n+1)-phase states of quantum optics. (C) 2002 American Institute of Physics.
引用
收藏
页码:3425 / 3444
页数:20
相关论文
共 50 条
  • [1] Coherent state realizations of su(n+1) in terms of subgroup functions
    de Guise, H
    Bertola, M
    GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 523 - 526
  • [2] Synchronization and balancing on the N-torus
    Scardovi, L.
    Sarlette, A.
    Sepulchre, R.
    SYSTEMS & CONTROL LETTERS, 2007, 56 (05) : 335 - 341
  • [3] ALGEBRAS OF DIFFEOMORPHISMS OF THE N-TORUS
    RAMOS, E
    SAH, CH
    SHROCK, RE
    JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (08) : 1805 - 1816
  • [4] GENERALIZED ANALYTICITY ON THE N-TORUS
    Shapiro, Victor L.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (05) : 1605 - 1612
  • [5] Phase locking to the n-torus
    Grindrod, Peter
    Patel, Ebrahim L.
    IMA JOURNAL OF APPLIED MATHEMATICS, 2016, 81 (01) : 152 - 164
  • [6] Phase locking to the n-torus
    Grindrod, Peter
    Patel, Ebrahim L.
    IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications), 2014, 81 (01): : 152 - 164
  • [7] Fractals and distributions on the N-torus
    Shapiro, VL
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (11) : 3431 - 3440
  • [8] An approach to renormalization on the n-torus
    Rockmore, Daniel
    Siegel, Ralph
    Tongring, Nils
    Tresser, Charles
    CHAOS, 1991, 1 (01) : 25 - 30
  • [9] The Schrodinger equation on cylinders and the n-torus
    Krausshar, R. S.
    Vieira, N.
    JOURNAL OF EVOLUTION EQUATIONS, 2011, 11 (01) : 215 - 237
  • [10] Contractions of SU(1, n) and SU(n+1) via Berezin quantization
    Cahen, Benjamin
    JOURNAL D ANALYSE MATHEMATIQUE, 2005, 97 (1): : 83 - 101