Hierarchically Pomegranate-Like MnO@porous Carbon Microspheres as an Enhanced-Capacity Anode for Lithium-Ion Batteries

被引:18
|
作者
Gao, Ming [1 ]
Huang, Shouji [1 ]
Zhang, Qi [1 ]
Xu, Guobao [2 ]
Chen, Zhuo [1 ]
Xiao, Yufeng [1 ]
Yang, Liwen [1 ]
Cao, Juexian [3 ]
Wei, Xiaolin [1 ]
机构
[1] Xiangtan Univ, Sch Phys & Optoelect Engn, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Sch Mat Sci & Engn, Natl Prov Lab Special Funct Thin Film Mat, Xiangtan 411105, Hunan, Peoples R China
[3] Xiangtan Univ, Hunan Inst Adv Sensing & Informat Technol, Xiangtan 411105, Hunan, Peoples R China
来源
CHEMELECTROCHEM | 2019年 / 6卷 / 11期
关键词
pomegranate-like materials; PCMS@MnO; anodes; lithium-ion batteries; carbon microspheres; HIGH-TAP-DENSITY; ELECTROCHEMICAL PERFORMANCE; FACILE SYNTHESIS; CATHODE MATERIAL; DOPED CARBON; STORAGE; NANOPARTICLES; NANOSHEETS; COMPOSITE; HYBRID;
D O I
10.1002/celc.201900405
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Transition-metal oxides have attracted much attention as promising anode materials, owing to high theoretical specific capacity for lithium-ion batteries (LIBs). However, rapid performance degradation derived from poor electrical conductivity and drastic volume changes during the repeated lithium insertion/extraction processes has limited their practical applications. In this work, we design and prepare pomegranate-like microspheres of nano-sized MnO particles with gaps among them as the core and porous carbon as the shell (designated as PCMS@MnO) by using a facile three-step process. In such unique PCMS@MnO, the porous carbon shell from phenolic resin is beneficial for the electronic conductivity and wettability, whereas the nano-sized MnO particles with gaps among them confined in the porous carbon shell can effectively prevent aggregation and pulverization of active materials. As an anode material for LIBs, the PCMS@MnO with a carbon content of about 12 wt % exhibits remarkably high reversible capability (935 mAh g(-1) at 100 mA g(-1)), outstanding rate performance, and superior cycling stability (527 mAh g(-1) of 2000 mA g(-1) after 2000 cycles). Our results suggest a great potential of pomegranate-like transition-metal oxide-based composites as anode materials in high-performance LIBs.
引用
收藏
页码:2891 / 2900
页数:10
相关论文
共 50 条
  • [1] Pomegranate-Like Silicon/Nitrogen-doped Graphene Microspheres as Superior-Capacity Anode for Lithium-Ion Batteries
    Lin, Jie
    He, Jiarui
    Chen, Yuanfu
    Li, Qian
    Yu, Bo
    Xu, Chen
    Zhang, Wanli
    ELECTROCHIMICA ACTA, 2016, 215 : 667 - 673
  • [2] Pomegranate-like high density LTO anode material for lithium-ion batteries
    Zhang, Yawen
    Bai, Yilu
    Ye, Lanlan
    Li, Ting
    Chen, Rui
    Jin, Hong
    Xia, Hongyan
    Xu, Hui
    MICRO & NANO LETTERS, 2021, 16 (01) : 39 - 43
  • [3] Pomegranate-like MoC@C composites as stable anode materials for lithium-ion batteries
    Qi, Jun
    Shi, Zhangping
    Li, Xiang
    Gao, Boxu
    Wang, Hui
    Yang, Lichun
    Tang, Yi
    Zhu, Min
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 786 : 284 - 291
  • [4] Pomegranate-Like Structured Si@SiOxComposites With High-Capacity for Lithium-Ion Batteries
    Li, Jianbin
    Liu, Wenjing
    Qiao, Yingjun
    Peng, Gongchang
    Ren, Yurong
    Xie, Zhengwei
    Qu, Meizhen
    FRONTIERS IN CHEMISTRY, 2020, 8
  • [5] Fast Preparation of Porous MnO/C Microspheres as Anode Materials for Lithium-Ion Batteries
    Su, Jing
    Liang, Hao
    Gong, Xian-Nian
    Lv, Xiao-Yan
    Long, Yun-Fei
    Wen, Yan-Xuan
    NANOMATERIALS, 2017, 7 (06)
  • [6] Hierarchically porous TiO2 microspheres as a high performance anode for lithium-ion batteries
    Lan, Tongbin
    Liu, Yubin
    Dou, Jie
    Hong, Zhensheng
    Wei, Mingdeng
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (04) : 1102 - 1106
  • [7] Pomegranate-like cobalt Phosphides@P-Doped carbon Nanostructures with controlled phase as anode materials for Lithium-Ion batteries
    Hu, Anyu
    Liu, Qihui
    Fang, Tao
    Pan, Yijing
    Huang, Siyi
    Fu, Yanpeng
    Shi, Zhicong
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2024, 975
  • [8] Nanoporous carbon microspheres as anode material for enhanced capacity of lithium ion batteries
    Shuntao Xu
    Zhengfu Zhang
    Tianya Wu
    Yuan Xue
    Ionics, 2018, 24 : 99 - 109
  • [9] Nanoporous carbon microspheres as anode material for enhanced capacity of lithium ion batteries
    Xu, Shuntao
    Zhang, Zhengfu
    Wu, Tianya
    Xue, Yuan
    IONICS, 2018, 24 (01) : 99 - 109
  • [10] Hierarchically porous and nitrogen, sulfur-codoped graphene-like microspheres as a high capacity anode for lithium ion batteries
    Sun, Dongfei
    Yang, Juan
    Yan, Xingbin
    CHEMICAL COMMUNICATIONS, 2015, 51 (11) : 2134 - 2137