Deterministic algorithms for 2-d convex programming and 3-d online linear programming

被引:0
|
作者
Chan, TM
机构
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a deterministic algorithm for solving two-dimensional convex programs with a linear objective function. The algorithm requires O(k log k) primitive operations for k constraints; if a feasible point is given, the bound reduces to O(k log k/log log k). As a consequence, we can decide whether k convex n-gons in the plane have a common intersection in O(k log n min{log k, log log n}) worst-case time. Furthermore, we can solve the three-dimensional online linear programming problem in o(log(3) n) worst-case time per operation.
引用
收藏
页码:464 / 472
页数:9
相关论文
共 50 条
  • [1] Deterministic algorithms for 2-d convex programming and 3-d online linear programming
    Chan, TM
    JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1998, 27 (01): : 147 - 166
  • [2] Deterministic Algorithms for 2-d Convex Programming and 3-d Online Linear Programming
    Chan, Timothy M.
    Journal of Algorithms, 1998, 27 (01): : 147 - 166
  • [3] Optimal Deterministic Algorithms for 2-d and 3-d Shallow Cuttings
    Timothy M. Chan
    Konstantinos Tsakalidis
    Discrete & Computational Geometry, 2016, 56 : 866 - 881
  • [4] Optimal Deterministic Algorithms for 2-d and 3-d Shallow Cuttings
    Chan, Timothy M.
    Tsakalidis, Konstantinos
    DISCRETE & COMPUTATIONAL GEOMETRY, 2016, 56 (04) : 866 - 881
  • [5] Convex Programming Upper Bounds on the Capacity of 2-D Constraints
    Tal, Ido
    Roth, Ron M.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (01) : 381 - 391
  • [6] Linear Programming Approach for 2-D Stabilization and Positivity
    Alfidi, Mohammed
    Hmamed, Abdelaziz
    Tadeo, Fernando
    POSITIVE SYSTEMS, PROCEEDINGS, 2009, 389 : 217 - +
  • [7] Optimal In-Place Algorithms for 3-d Convex Hulls and 2-d Segment Intersection
    Chan, Timothy M.
    Chen, Eric Y.
    PROCEEDINGS OF THE TWENTY-FIFTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SCG'09), 2009, : 80 - 87
  • [8] A Galerkin method for the simulation of the transient 2-D/2-D and 3-D/3-D linear Boltzmann equation
    Gobbert, Matthias K.
    Webster, Samuel G.
    Cale, Timothy S.
    JOURNAL OF SCIENTIFIC COMPUTING, 2007, 30 (02) : 237 - 273
  • [9] A Galerkin Method for the Simulation of the Transient 2-D/2-D and 3-D/3-D Linear Boltzmann Equation
    Matthias K. Gobbert
    Samuel G. Webster
    Timothy S. Cale
    Journal of Scientific Computing, 2007, 30 : 237 - 273
  • [10] Visual programming in 3-D
    Najork, M
    DR DOBBS JOURNAL, 1995, 20 (12): : 18 - +