Bimodal magmatism produced by progressively inhibited crustal assimilation

被引:38
|
作者
Meade, F. C. [1 ]
Troll, V. R. [1 ,2 ]
Ellam, R. M. [3 ]
Freda, C. [2 ]
Font, L. [4 ]
Donaldson, C. H. [5 ]
Klonowska, I. [1 ]
机构
[1] Uppsala Univ, Dept Earth Sci, CEMPEG, S-75236 Uppsala, Sweden
[2] Ist Nazl Geofis & Vulcanol, I-00143 Rome, Italy
[3] Scottish Univ, Environm Res Ctr, E Kilbride G75 0QF, Lanark, Scotland
[4] Vrije Univ Amsterdam, Dept Petrol, NL-1081 HV Amsterdam, Netherlands
[5] Univ St Andrews, Sch Geog & Geosci, St Andrews KY16 9AL, Fife, Scotland
来源
NATURE COMMUNICATIONS | 2014年 / 5卷
基金
爱尔兰科学基金会;
关键词
TRACE-ELEMENT; CARLINGFORD COMPLEX; SLIEVE-GULLION; VOLCANIC-ROCKS; DALY-GAP; ISOTOPE; CONTAMINATION; BASALT; ORIGIN; PETROGENESIS;
D O I
10.1038/ncomms5199
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The origin of bimodal (mafic-felsic) rock suites is a fundamental question in volcanology. Here we use major and trace elements, high-resolution Sr, Nd and Pb isotope analyses, experimental petrology and thermodynamic modelling to investigate bimodal magmatism at the iconic Carlingford Igneous Centre, Ireland. We show that early microgranites are the result of extensive assimilation of trace element-enriched partial melts of local metasiltstones into mafic parent magmas. Melting experiments reveal the crust is very fusible, but thermodynamic modelling indicates repeated heating events rapidly lower its melt-production capacity. Granite generation ceased once enriched partial melts could no longer form and subsequent magmatism incorporated less fertile restite compositions only, producing mafic intrusions and a pronounced compositional gap. Considering the frequency of bimodal magma suites in the North Atlantic Igneous Province, and the ubiquity of suitable crustal compositions, we propose 'progressively inhibited crustal assimilation' (PICA) as a major cause of bimodality in continental volcanism.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Bimodal magmatism produced by progressively inhibited crustal assimilation
    F. C. Meade
    V. R. Troll
    R. M. Ellam
    C. Freda
    L. Font
    C. H. Donaldson
    I. Klonowska
    Nature Communications, 5
  • [2] Bimodal magmatism in the Eastern Dharwar Craton, southern India: Implications for Neoarchean crustal evolution
    Wang, Jing-Yi
    Santosh, M.
    Jayananda, M.
    Aadhiseshan, K. R.
    LITHOS, 2020, 354
  • [3] Magmatism: A crustal and geodynamic perspective
    Ganne, Jerome
    Feng, Xiaojun
    JOURNAL OF STRUCTURAL GEOLOGY, 2018, 114 : 329 - 335
  • [4] CRUSTAL EVOLUTION BY ARC MAGMATISM
    HAMILTON, W
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1981, 301 (1461): : 279 - 291
  • [5] ARCHEAN MAGMATISM AND CRUSTAL THICKENING
    CONDIE, KC
    GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 1973, 84 (09) : 2981 - 2991
  • [6] Possibility of Lunar Crustal Magmatism Producing Strong Crustal Magnetism
    Liang, Y.
    Tikoo, S. M.
    Krawczynski, M. J.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2024, 129 (05)
  • [7] Magmatism and crustal accretion in continental rifts
    Kazmin, VG
    Byakov, AF
    JOURNAL OF AFRICAN EARTH SCIENCES, 2000, 30 (03): : 555 - 568
  • [8] PROTEROZOIC CRUSTAL GROWTH - UNDERPLATING AND MAGMATISM
    MCCULLOCH, MT
    BLACK, LP
    PAGE, RW
    CHEMICAL GEOLOGY, 1988, 70 (1-2) : 71 - 71
  • [9] SHRIMP zircon U-Pb evidence for extended Mesozoic magmatism in the Patagonian Batholith and assimilation of Archean crustal components
    Rolando, AP
    Hartmann, LA
    Santos, JOS
    Fernandez, RR
    Etcheverry, RO
    Schalamuk, IA
    McNaughton, NJ
    JOURNAL OF SOUTH AMERICAN EARTH SCIENCES, 2002, 15 (02) : 267 - 283
  • [10] Crustal melting and granite magmatism: Key issues
    Brown, M
    PHYSICS AND CHEMISTRY OF THE EARTH PART A-SOLID EARTH AND GEODESY, 2001, 26 (4-5): : 201 - 212