Asymptotic Stability for the 2D Navier-Stokes Equations with Multidelays on Lipschitz Domain

被引:0
|
作者
Zhang, Ling-Rui [1 ]
Yang, Xin-Guang [1 ]
Su, Ke-Qin [2 ]
机构
[1] Henan Normal Univ, Dept Math & Informat Sci, Xinxiang 453007, Peoples R China
[2] Henan Agr Univ, Coll Informat & Management Sci, Zhengzhou 450046, Peoples R China
关键词
Navier-Stokes equations; multidelays; Lipschitz domain; PULLBACK ATTRACTORS;
D O I
10.3390/math10234561
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the asymptotic stability derived for the two-dimensional incompressible Navier-Stokes equations with multidelays on Lipschitz domain, which models the control theory of 2D fluid flow. By a new retarded Gronwall inequality and estimates of stream function for Stokes equations, the complete trajectories inside pullback attractors are asymptotically stable via the restriction on the generalized Grashof number of fluid flow. The results in this presented paper are some extension of the literature by Yang, Wang, Yan and Miranville in 2021, as well as also the preprint by Su, Yang, Miranville and Yang in 2022
引用
收藏
页数:12
相关论文
共 50 条