Generation of esophageal organoids and organotypic raft cultures from human pluripotent stem cells

被引:9
|
作者
Shacham-Silverberg, Vered [1 ,2 ]
Wells, James M. [1 ,2 ,3 ]
机构
[1] Cincinnati Childrens Hosp Med Ctr, Div Dev Biol, Cincinnati, OH 45229 USA
[2] Cincinnati Childrens Hosp Med Ctr, Ctr Stem Cell & Organoid Med, Cincinnati, OH 45229 USA
[3] Cincinnati Childrens Hosp Med Ctr, Div Endocrinol, Cincinnati, OH 45229 USA
关键词
STRATIFIED SQUAMOUS EPITHELIUM; DIFFERENTIATION; COLUMNAR; FOREGUT;
D O I
10.1016/bs.mcb.2020.04.009
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The human and murine esophagus have some substantial differences that limit the utility of mouse as a model to study human esophagus development and disease. Due to these limitations several recent reports describe the development of methods to generate human esophageal tissues via the directed differentiation of pluripotent stem cells. Methods for differentiation are based on knowledge of years of studying embryonic development of the esophagus in vertebrate animal models. Esophageal tissues derived from human pluripotent stem cells have been used to study both development and diseases affecting the esophagus. Here, we provide a detailed protocol for the directed differentiation of human pluripotent stem cells into human esophageal organoids and organotypic raft cultures, that are highly similar, morphologically and transcriptionally, to the human esophagus epithelium. We discuss limitations of the current esophageal models and the importance of engineering more complex tissue models with muscle and enteric nerves. Moving forward, these models might be utilized for the development of personalized treatments, as well as other therapeutic solutions.
引用
收藏
页码:1 / +
页数:5
相关论文
共 50 条
  • [1] Efficient generation of human cerebral organoids directly from adherent cultures of pluripotent stem cells
    Gonzalez-Sastre, Rosa
    Coronel, Raquel
    Bernabeu-Zornoza, Adela
    Mateos-Martinez, Patricia
    Rosca, Andreea
    Lopez-Alonso, Victoria
    Liste, Isabel
    JOURNAL OF TISSUE ENGINEERING, 2024, 15
  • [2] Generation of cerebral organoids from human pluripotent stem cells
    Lancaster, Madeline A.
    Knoblich, Juergen A.
    NATURE PROTOCOLS, 2014, 9 (10) : 2329 - 2340
  • [3] Generation of kidney organoids from human pluripotent stem cells
    Minoru Takasato
    Pei X Er
    Han S Chiu
    Melissa H Little
    Nature Protocols, 2016, 11 : 1681 - 1692
  • [4] Generation of kidney organoids from human pluripotent stem cells
    Takasato, Minoru
    Er, Pei X.
    Chiu, Han S.
    Little, Melissa H.
    NATURE PROTOCOLS, 2016, 11 (09) : 1681 - 1692
  • [5] Generation of cerebral organoids from human pluripotent stem cells
    Madeline A Lancaster
    Juergen A Knoblich
    Nature Protocols, 2014, 9 : 2329 - 2340
  • [6] Generation of human colonic organoids from human pluripotent stem cells
    Daoud, Abdelkader
    Munera, Jorge O.
    HUMAN PLURIPOTENT STEM CELL DERIVED ORGANOID MODELS, 2020, 159 : 201 - 227
  • [7] Generation of Human Blood Vessel Organoids from Pluripotent Stem Cells
    Werschler, Nicolas
    Penninger, Josef
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2023, (191):
  • [8] Generation of hepatobiliary organoids from human induced pluripotent stem cells
    Wu, Fenfang
    Wu, Di
    Ren, Yong
    Huang, Yuhua
    Feng, Bo
    Zhao, Nan
    Zhang, Taotao
    Chen, Xiaoni
    Chen, Shangwu
    Xu, Anlong
    JOURNAL OF HEPATOLOGY, 2019, 70 (06) : 1145 - 1158
  • [9] Generation of kidney tubular organoids from human pluripotent stem cells
    Yamaguchi, Shintaro
    Morizane, Ryuji
    Homma, Koichiro
    Monkawa, Toshiaki
    Suzuki, Sayuri
    Fujii, Shizuka
    Koda, Muneaki
    Hiratsuka, Ken
    Yamashita, Maho
    Yoshida, Tadashi
    Wakino, Shu
    Hayashi, Koichi
    Sasaki, Junichi
    Hori, Shingo
    Itoh, Hiroshi
    SCIENTIFIC REPORTS, 2016, 6
  • [10] Generation of Organotypic Raft Cultures from Primary Human Keratinocytes
    Anacker, Daniel
    Moody, Cary
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2012, (60):