Advances in endothelial shear stress proteomics

被引:14
|
作者
Firasat, Sabika [1 ,2 ]
Hecker, Markus [3 ]
Binder, Lutz [1 ]
Asif, Abdul R. [1 ]
机构
[1] Inst Clin Chem, UMG Labs, D-37075 Gottingen, Germany
[2] Univ Wah, Dept Biosci, Wah Cantt, Pakistan
[3] Heidelberg Univ, Inst Physiol & Pathophysiol, Div Cardiovasc Physiol, D-69120 Heidelberg, Germany
关键词
endothelial dysfunction; mass spectrometry; proteomics; shear stress; NITRIC-OXIDE SYNTHASE; LOW-DENSITY-LIPOPROTEIN; PHOSPHATIDYLINOSITOL; 3-KINASE; VASCULAR ENDOTHELIUM; MEDIATED PROTECTION; SIGNAL-TRANSDUCTION; CALCIUM RESPONSES; OXIDATIVE STRESS; S-NITROSYLATION; DISTURBED FLOW;
D O I
10.1586/14789450.2014.933673
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The vascular endothelium lining the luminal surface of all blood vessels is constantly exposed to shear stress exerted by the flowing blood. Blood flow with high laminar shear stress confers protection by activation of antiatherogenic, antithrombotic and anti-inflammatory proteins, whereas low or oscillatory shear stress may promote endothelial dysfunction, thereby contributing to cardiovascular disease. Despite the usefulness of proteomic techniques in medical research, however, there are relatively few reports on proteome analysis of cultured vascular endothelial cells employing conditions that mimic in vivo shear stress attributes. This review focuses on the proteome studies that have utilized cultured endothelial cells to identify molecular mediators of shear stress and the roles they play in the regulation of endothelial function, and their ensuing effect on vascular function in general. It provides an overview on current strategies in shear stress-related proteomics and the key proteins mediating its effects which have been characterized so far.
引用
收藏
页码:611 / 619
页数:9
相关论文
共 50 条
  • [1] The endothelial vessel wall shear stress ("shear stress")
    Chiriac, Liviu
    Cristian, Gabriel
    Nita, Daniel
    Carstea, Adela
    Murgu, Vasile
    Mocanu, Iancu
    Droc, Ionel
    Gheorghe, Lucian
    Tintoiu, Ion
    Greere, Vasile
    ROMANIAN JOURNAL OF MILITARY MEDICINE, 2011, 114 (04) : 3 - 12
  • [2] Endothelial cell, shear stress and biomechanopharmacology
    Liao, Fulong
    Han, Dong
    Cao, Jun
    ACTA PHARMACOLOGICA SINICA, 2006, 27 : 432 - 432
  • [3] Shear stress and the endothelial transport barrier
    Tarbell, John M.
    CARDIOVASCULAR RESEARCH, 2010, 87 (02) : 320 - 330
  • [4] Deciphering the endothelial shear stress sensor
    Poelmann, Robert E.
    Van der Heiden, Kim
    Groot, Adriana Gittenberger-de
    Hierck, Beerend P.
    CIRCULATION, 2008, 117 (09) : 1124 - 1126
  • [5] Endothelial responses to fluid shear stress
    Schwartz, M. A.
    JOURNAL OF THROMBOSIS AND HAEMOSTASIS, 2009, 7 : 100 - 100
  • [6] Shear stress and endothelial cell activation
    Fisher, AB
    Al-Mehdi, AB
    Manevich, Y
    CRITICAL CARE MEDICINE, 2002, 30 (05) : S192 - S197
  • [7] Shear stress and endothelial cell proliferation
    Milovanova, TN
    Haddad, A
    Fisher, AB
    FASEB JOURNAL, 2003, 17 (05): : A844 - A844
  • [8] The role of endothelial shear stress, shear stress gradient, and plaque topography in plaque erosion
    Hakim, Diaa
    Pinilla-Echeverri, Natalia
    Coskun, Ahmet U.
    Pu, Zhongyue
    Kajander, Olli A.
    Rupert, Deborah
    Maynard, Charles
    Cefalo, Nicholas
    Siasos, Gerasimos
    Papafaklis, Michail I.
    Kostas, Stefanu
    Michalis, Lampros K.
    Jolly, Sanjit
    Mehta, Shamir R.
    Sheth, Tej
    Croce, Kevin
    Stone, Peter H.
    ATHEROSCLEROSIS, 2023, 376 : 11 - 18
  • [9] Advances in crop proteomics: PTMs of proteins under abiotic stress
    Wu, Xiaolin
    Gong, Fangping
    Cao, Di
    Hu, Xiuli
    Wang, Wei
    PROTEOMICS, 2016, 16 (05) : 847 - 865
  • [10] ECM in endothelial responses to fluid shear stress
    Orr, W.
    Schwartz, M.
    MATRIX BIOLOGY, 2006, 25 : S3 - S3