Advanced devices for cryogenic thermal management

被引:0
|
作者
Bugby, D. [1 ]
Stouffer, C. [1 ]
Garzon, J. [1 ]
Beres, M. [1 ]
Gilchrist, A. [1 ]
机构
[1] Swales Aerosp, Beltsville, MD 20705 USA
关键词
cryogenic integration; thermal switching; thermal transport; thermal management; cryocooler redundancy;
D O I
暂无
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper describes six advanced cryogenic thermal management devices/subsystems developed by Swales Aerospace for ground/space-based applications of interest to NASA, DoD, and the commercial sector. The devices/subsystems described herein include the following: (a) a differential thermal expansion cryogenic thermal switch (DTE-CTSW) constructed with high purity aluminum end-pieces and an Ultem support rod for the 6 K Mid-Infrared Instrument (MIRI) on the James Webb Space Telescope (JWST); (b) a quadredundant DTE-CTSW assembly for the 35 K science instruments (NIRCam, NIRSpec, and FGS) mounted on the JWST Integrated Science Instrument Module (ISIM); (c) a cryogenic diode heat pipe (CDHP) thermal switching system using methane as the working fluid for the 100 K CRISM hyperspectral. mapping instrument on the Mars Reconnaissance Orbiter (MRO); and (d) three additional devices/subsystems developed during the AFRL-sponsored CRYOTOOL program, which include a dual DTE-CTSW/dual cryocooler test bed, a miniaturized neon cryogenic loop heat pipe (mini-CLHP), and an across gimbal cryogenic thermal transport system (GCTTS). For the first three devices/subsystems mentioned above, this paper describes key aspects of the development efforts including concept definition, design, fabrication, and testing. For the latter three, this paper provides brief overview descriptions as key details are provided in a related paper.
引用
收藏
页码:1790 / +
页数:2
相关论文
共 50 条
  • [1] Thermal management of advanced electronic devices by negative thermal expansion particulates
    Takenaka K.
    Takenaka, Koshi (takenaka@nuap.nagoya-u.ac.jp), 2020, Journal of the Japan Society of Powder and Powder Metallurgy, 15 Morimoto-cho Shimogamo, Sakyo-Ku Kyoto, Japan (67): : 499 - 504
  • [2] Development and testing of an advanced cryogenic thermal switch and cryogenic thermal switch test bed
    Marland, B
    Bugby, D
    Stouffer, C
    CRYOGENICS, 2004, 44 (6-8) : 413 - 420
  • [3] Reliability and Variability of Advanced CMOS Devices at Cryogenic Temperatures
    Grill, A.
    Bury, E.
    Michl, J.
    Tyaginov, S.
    Linten, D.
    Grasser, T.
    Parvais, B.
    Kaczer, B.
    Waltl, M.
    Radu, I
    2020 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM (IRPS), 2020,
  • [4] Advanced Packaging and Thermal Management for High Power Density GaN Devices
    Zhao, Yuan
    Semenic, Tadej
    Bhunia, Avijit
    2013 IEEE COMPOUND SEMICONDUCTOR INTEGRATED CIRCUIT SYMPOSIUM (CSICS): INTEGRATED CIRCUITS IN GAAS, INP, SIGE, GAN AND OTHER COMPOUND SEMICONDUCTORS, 2013,
  • [5] Flame-Retardant Host-Guest Films for Efficient Thermal Management of Cryogenic Devices
    Yang, Yishan
    Lyu, Jing
    Chen, Jun
    Liao, Jianhe
    Zhang, Xuetong
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (41)
  • [6] THERMAL EFFECTS IN JFET AND MOSFET DEVICES AT CRYOGENIC TEMPERATURES
    SESNIC, SS
    CRAIG, GR
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1972, ED19 (08) : 933 - &
  • [7] Simulating noise performance of advanced devices down to cryogenic temperatures
    Caddemi, A
    Catalfamo, F
    Donato, N
    UNSOLVED PROBLEMS OF NOISE AND FLUCTUATIONS, 2005, 800 : 480 - 485
  • [8] Development and testing of advanced cryogenic thermal switch concepts
    Marland, B
    Bugby, D
    Stouffer, C
    SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM, PTS 1 AND 2, 2000, 504 : 837 - 846
  • [9] Heat switch technology for cryogenic thermal management
    Shu, Q. S.
    Demko, J. A.
    Fesmire, J. E.
    ADVANCES IN CRYOGENIC ENGINEERING, 2017, 278
  • [10] Thermal noise in electro-optic devices at cryogenic temperatures
    Mobassem, Sonia
    Lambert, Nicholas J.
    Rueda, Alfredo
    Fink, Johannes M.
    Leuchs, Gerd
    Schwefel, Harald G. L.
    QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (04)