NUMERICAL INVESTIGATION OF WAVE-BODY INTERACTIONS IN SHALLOW WATER

被引:0
|
作者
Luo, Yi [1 ]
Vada, Torgeir [2 ]
Greco, Marilena [3 ]
机构
[1] NTNU, Dept Marine Technol, Trondheim, Norway
[2] DNV, Hovik, Norway
[3] CNR INSEAN, AMOS, NTNU, Dept Marine Technol, Trondheim, Norway
关键词
D O I
暂无
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Present investigation is based on a numerical study using a time-domain Rankine panel method. The effort and novelty is to extend the applicability of the solver to shallower waters and to steeper waves by including additional non-linear effects, but in a way so to limit the increase in computational costs. The challenge is to assess the improvement with respect to the basic formulation and the recovery of linear theory in the limit of small waves. The wave theories included in the program are Airy, Stokes 5th order and Stream function. By their comparison the effect of the incoming-wave non-linearities can be investigated. For the free-surface boundary conditions two alternative formulations are investigated, one by Hui Sun [1] and one developed here. The two formulations combined with the above-mentioned wave theories are applied to two relevant problems. The first case is a fixed vertical cylinder in regular waves, where numerical results are compared with the model tests by Grue & Huseby [2]. The second case is a freely floating model of a LNG carrier (with zero forward speed) in regular waves, where computations are compared with the experimental results from the EC project "Extreme Seas". This comparison revealed several challenges such as how to interpret/post process the experimental data. Some of these are described in the paper. After careful handling of both computed and measured data the comparisons show reasonable agreement. It is proven that including more non-linear effects in the free-surface boundary conditions can significantly improve the results. The formulation by Hui Sun gives better results compared to the linear condition, but the present formulation is shown to provide a further improvement, which can be explained through the nonlinear terms included/retained in the two approaches.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Numerical method in wave-body interactions
    Mousavizadegan S.H.
    Rahman M.
    Journal of Applied Mathematics and Computing, 2005, 17 (1-2) : 73 - 91
  • [2] Numerical analysis of current effect on nonlinear wave-body interactions
    Koo, Weoncheol
    Kim, M. H.
    PROCEEDINGS OF THE SIXTEENTH (2006) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL 3, 2006, : 377 - +
  • [3] Numerical simulation of wave-body interactions using a modified SPH solver
    Guilcher, P. -M.
    Ducrozet, G.
    Doring, M.
    Alessandrini, B.
    Ferrant, P.
    PROCEEDINGS OF THE SIXTEENTH (2006) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL 3, 2006, : 348 - +
  • [4] Numerical simulation of strongly nonlinear wave-body interactions with experimental validation
    Hu, Changhong
    Kashiwagi, Masashi
    Kitadai, Akihiko
    PROCEEDINGS OF THE SIXTEENTH (2006) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL 3, 2006, : 467 - 472
  • [5] Wave-Body Interactions for a Surface-Piercing Body in Water of Finite Depth
    Yong Li
    Mian Lin
    Journal of Hydrodynamics, 2010, 22 : 745 - 752
  • [6] WAVE-BODY INTERACTIONS FOR A SURFACE-PIERCING BODY IN WATER OF FINITE DEPTH
    Li Yong
    Lin Mian
    JOURNAL OF HYDRODYNAMICS, 2010, 22 (06) : 745 - 752
  • [8] The role of tertiary wave interactions in wave-body problems
    Molin, B
    Remy, F
    Kimmoun, O
    Jamois, E
    JOURNAL OF FLUID MECHANICS, 2005, 528 : 323 - 354
  • [9] On the modeling of highly nonlinear wave-body interactions
    Yang, Chi
    Loehner, Rainald
    PROCEEDINGS OF THE SIXTEENTH (2006) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL 3, 2006, : 256 - +
  • [10] A numerical solution of the wave-body interactions for a freely floating vertical cylinder in different water depths using OpenFOAM
    Yousefifard, Mahdi
    Graylee, Adeleh
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2021, 43 (01)