Random Free Fermions: An Analytical Example of Eigenstate Thermalization

被引:54
|
作者
Magan, Javier M. [1 ,2 ]
机构
[1] Univ Utrecht, Inst Theoret Phys, NL-3508 TD Utrecht, Netherlands
[2] Univ Utrecht, Ctr Extreme Matter & Emergent Phenomena, NL-3508 TD Utrecht, Netherlands
关键词
RANDOM-MATRIX THEORY; STATISTICAL-MECHANICS; CHAOS;
D O I
10.1103/PhysRevLett.116.030401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Having analytical instances of the eigenstate thermalization hypothesis (ETH) is of obvious interest, both for fundamental and applied reasons. This is generally a hard task, due to the belief that nonlinear interactions are basic ingredients of the thermalization mechanism. In this article we prove that random Gaussian-free fermions satisfy ETH in the multiparticle sector, by analytically computing the correlations and entanglement entropies of the theory. With the explicit construction at hand, we finally comment on the differences between fully random Hamiltonians and random Gaussian systems, providing a physically motivated notion of randomness of the microscopic quantum state.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Eigenstate Thermalization Hypothesis and Free Probability
    Pappalardi, Silvia
    Foini, Laura
    Kurchan, Jorge
    PHYSICAL REVIEW LETTERS, 2022, 129 (17)
  • [2] Eigenstate Thermalization, Random Matrix Theory, and Behemoths
    Khaymovich, Ivan M.
    Haque, Masudul
    McClarty, Paul A.
    PHYSICAL REVIEW LETTERS, 2019, 122 (07)
  • [4] Eigenstate thermalization on average
    Dunlop, Joe
    Cohen, Oliver
    Short, Anthony J.
    PHYSICAL REVIEW E, 2021, 104 (02)
  • [5] Eigenstate thermalization hypothesis
    Deutsch, Joshua M.
    REPORTS ON PROGRESS IN PHYSICS, 2018, 81 (08)
  • [6] Necessity of Eigenstate Thermalization
    De Palma, Giacomo
    Serafini, Alessio
    Giovannetti, Vittorio
    Cramer, Marcus
    PHYSICAL REVIEW LETTERS, 2015, 115 (22)
  • [7] Generalized deep thermalization for free fermions
    Lucas, Maxime
    Piroli, Lorenzo
    De Nardis, Jacopo
    De Luca, Andrea
    PHYSICAL REVIEW A, 2023, 107 (03)
  • [8] On Eigenstate Thermalization Hypothesis
    O. Inozemcev
    Physics of Particles and Nuclei, 2020, 51 : 448 - 451
  • [9] On Eigenstate Thermalization Hypothesis
    Inozemcev, O.
    PHYSICS OF PARTICLES AND NUCLEI, 2020, 51 (04) : 448 - 451
  • [10] Alternatives to Eigenstate Thermalization
    Rigol, Marcos
    Srednicki, Mark
    PHYSICAL REVIEW LETTERS, 2012, 108 (11)